Skip to main content

Water Splitting Using Electrochemical Approach

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

For electrochemical water splitting, a number of bioinspired and biomimetic Mn-based materials have been developed; however, the catalytic performances markedly differ between natural and synthetic Mn catalysts. Based on the recent in situ detection of surface intermediates for the oxygen evolution reaction (OER) by MnO2, this chapter introduces the design rationale for the efficient OER catalysts, and discusses the evolutional origin of natural Mn4-clusters to provide a better understanding of the differences in activity between natural and man-made OER catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Nozik AJ (1978) PHOTOELECTROCHEMISTRY: APPLICATIONS TO SOLAR ENERGY CONVERSION. Annu Rev Phys Chem 29:189–222

    Article  Google Scholar 

  3. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145

    Article  Google Scholar 

  4. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  Google Scholar 

  5. Vass I, Styring S (1991) pH-dependent charge equilibria between Tyrosine-D and the S states in photosystem ii. Estimation of Relative Midpoint Redox Potentials. Biochemistry 30:830–839

    Google Scholar 

  6. Geijer P, Morvaridi F, Styring S (2001) The S3 state of the oxygen-evolving complex in photosystem ii is converted to the S2Y Z state at alkaline pH. Biochemistry 40:10881–10891

    Article  Google Scholar 

  7. Metz JG, Nixon PJ, Rogner M, Brudvig GW, Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: evidence that Tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28:6960–6969

    Article  Google Scholar 

  8. Ananyev G, Dismukes GC (2005) How fast can photosystem ii split water? Kinetic performance at high and low frequencies. Photosynth Res 84:355–365

    Article  Google Scholar 

  9. Trasatti S, Buzzanca G (1971) Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29:A1–A5

    Article  Google Scholar 

  10. Harriman A, Richoux M, Christensen PA, Moseri S, Neta P (1987) Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2・2H2O. J Chem Soc Faraday Trans 1(83):3001–3014

    Article  Google Scholar 

  11. Kiwi J, Grätzel M (1979) Colloidal redox catalysts for evolution of oxygen and for light-induced evolution of hydrogen from water. Angew Chem Int Ed 18:624–626

    Article  Google Scholar 

  12. Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 1(84):2795–2806

    Article  Google Scholar 

  13. Mills A, Russell T (1991) Comparative study of new and established heterogeneous oxygen catalysts. J Chem Soc Faraday Trans 87:1245–1250

    Article  Google Scholar 

  14. Yagi M, Tomita E, Sakita S, Kuwabara T, Nagai K (2005) Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation. J Phys Chem B 109:21489–21491

    Article  Google Scholar 

  15. Nakagawa T, Bjorge NS, Murray RW (2009) Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 131:15578–15579

    Article  Google Scholar 

  16. Nakagawa T, Beasley CA, Murray RW (2009) Efficient Electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J Phys Chem C 113:12958–12961

    Article  Google Scholar 

  17. Rüetschi P, Delahay P (1955) Influence of electrode material on oxygen overvoltage: a theoretical analysis. J. Chem. Phys. 23:556–560

    Article  Google Scholar 

  18. Iwakura C, Nashioka M, Tamura H (1982) Nihon Kagaku Kaishi 8:1294–1298

    Article  Google Scholar 

  19. Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–301

    Article  Google Scholar 

  20. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  21. Raabe S, Mierwaldt D, Ciston J, Uijttewaal M, Stein H, Hoffmann J, Zhu Y, Blöchl P, Jooss C (2012) In situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites. Adv Funct Mater 22:3378–3388

    Article  Google Scholar 

  22. Brunschwig BS, Chou MH, Creutz C, Ghosh P, Sutin N (1983) Mechanisms of water oxidation to oxygen: cobalt(iv) as an intermediate in the aquocobalt(ii)-catalyzed reaction. J Am Chem Soc 105:4832–4833

    Article  Google Scholar 

  23. Kanan MW, Nocera DG (2008) In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science 321:1072–1075

    Article  Google Scholar 

  24. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072

    Article  Google Scholar 

  25. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  Google Scholar 

  26. Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358

    Article  Google Scholar 

  27. El-Deab MS, Awad MI, Mohammad AM, Ohsaka T (2007) Enhanced water electrolysis: electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 9:2082–2087

    Article  Google Scholar 

  28. Morita M, Iwakura C, Tamura H (1979) The anodic characteristics of massive manganese oxide electrode. Electrochim Acta 24:357–362

    Article  Google Scholar 

  29. Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328

    Google Scholar 

  30. Morita M, Iwakura C, Tamura H (1978) The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx. Electrochim Acta 23:331–335

    Article  Google Scholar 

  31. Robinson DM, Go YB, Greenblatt M, Dismukes GC (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132:11467–11469

    Article  Google Scholar 

  32. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4・xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237

    Article  Google Scholar 

  33. Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922

    Article  Google Scholar 

  34. Yagi M, Narita K (2004) Catalytic O2 Evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J Am Chem Soc 126:8084–8085

    Article  Google Scholar 

  35. Narita K, Kuwabara T, Sone K, Shimizu K, Yagi M (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110:23107–23114

    Article  Google Scholar 

  36. Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47:7335–7338

    Article  Google Scholar 

  37. Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527

    Article  Google Scholar 

  38. Naruta Y, Sasayama M, Sasaki T (1994) Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew Chem Int Ed Engl 33:1839–1841

    Article  Google Scholar 

  39. Gao Y, Åkermark T, Liu J, Sun L, Åkermark B (2009) Nucleophilic attack of hydroxide on a MnV Oxo complex: a model of the O–O bond formation in the oxygen evolving complex of photosystem II. J Am Chem Soc 131:8726–8727

    Article  Google Scholar 

  40. Najafpour MM, Haghighi B, Ghobadi MZ, Sedigh DJ (2013) Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Comm 49:8824–8826

    Article  Google Scholar 

  41. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3:79–84

    Article  Google Scholar 

  42. Singh RN, Singh JP, Cong HN, Chartier P (2006) Effect of partial substitution of Cr on electrocatalytic properties of MnFe2O4 towards O2-evolution in alkaline medium. Int J Hydrogen Energy 31:1372–1378

    Article  Google Scholar 

  43. Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135:3494–3501

    Article  Google Scholar 

  44. Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527

    Article  Google Scholar 

  45. Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156

    Article  Google Scholar 

  46. Takashima T, Yamaguchi A, Hashimoto K, Irie H, Nakamura R (2014) In situ UV-vis absorption spectra of intermediate species for oxygen-evolution reaction on the surface of MnO2 in neutral and alkaline media. Electrochemistry 82:325–327

    Article  Google Scholar 

  47. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61

    Article  Google Scholar 

  48. Yano J, Kern J, Sauer K, Latimer MJ, Puskar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  Google Scholar 

  49. Haumann M, Muller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation Cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44:1894–1908

    Article  Google Scholar 

  50. Siegbahn PE (1827) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. Biochim Biophys Acta 1003–1019:2013

    Google Scholar 

  51. Gatt P, Stranger R, Pace RJ (2011) Application of computational chemistry to understanding the structure and mechanism of the Mn catalytic site in photosystem II—a review. J Photochem Photobiol, B 104:80–93

    Article  Google Scholar 

  52. Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134:7442–7449

    Article  Google Scholar 

  53. Kanda K, Yamanaka S, Saito T, Umena Y, Kawakami K, Shen J-R, Kamiya N, Okumura M, Nakamura H, Yamaguchi K (2011) Labile electronic and spin states of the CaMn4O5 cluster in the PSII system refined to the 1.9 Å X-ray resolution. UB3LYP computational results. Chem Phys Lett 506:98–103

    Article  Google Scholar 

  54. Gatt P, Petrie S, Stranger R, Pace RJ (2012) Rationalizing the 1.9 Å crystal structure of photosystem II—a remarkable Jahn–Teller balancing act induced by a single proton transfer. Angew Chem Int Ed 51:12025–12028

    Google Scholar 

  55. Roelofs TA, Liang WC, Latimer MJ, Cinco RM, Rompel A, Andrews JC, Sauer K, Yachandra VK, Klein MP (1996) Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci USA 93:3335–3340

    Article  Google Scholar 

  56. Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) A model of the oxygen-evolving center of photosystem II predicted by structural Refinement based on EXAFS Simulations. J Am Chem Soc 130:6728–6730

    Article  Google Scholar 

  57. Mazin II, Khomskii DI, Lengsdorf R, Alonso JA, Marshall WG, Ibbreson RM, Podlesnyak A, Martínez-Lope MJ, Abd-Elmeguid MM (2007) Charge ordering as alternative to Jahn-Teller distortion. Phys Rev Lett 98:176406

    Article  Google Scholar 

  58. Mizokawa T, Khomskii DI, Sawatzky GA (2000) Spin and charge ordering in self-doped Mott insulators. Phys Rev B 61:11263–11266

    Article  Google Scholar 

  59. Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR (2013) Electrostatic effects on proton-coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II. J Phys Chem B 117:6217–6226

    Article  Google Scholar 

  60. Meyer TJ, Huynh MH, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46:5284–5304

    Article  Google Scholar 

  61. Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135:15670–15673

    Article  Google Scholar 

  62. Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R (2014) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nat Commun doi:10.1038/ncomms5256

    Google Scholar 

  63. Medina-Ramos J, Oyesanya O, Alvarez JC (2013) Buffer effects in the kinetics of concerted proton-coupled electron transfer: the electrochemical oxidation of glutathione mediated by [IrCl6]2− at variable buffer pK a and concentration. J Phys Chem C 117:902–912

    Article  Google Scholar 

  64. Jencks WP (1972) Requirements for general acid-base catalysis of complex reactions. J Am Chem Soc 94:4731–4732

    Article  Google Scholar 

  65. Jencks WP (1972) General acid-base catalysis of complex reactions in water. Chem Rev 72:705–718

    Article  Google Scholar 

  66. Russell MJ, Hall AJ (2002) Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News 113:6–12

    Google Scholar 

  67. Sauer K, Yachandra VK (2002) A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci USA 99:8631–8636

    Article  Google Scholar 

  68. Armstrong FA (2008) Why did nature choose manganese to make oxygen? Phil Trans R Soc B 363:1263–1270

    Article  Google Scholar 

  69. http://pubs.usgs.gov/fs/2002/fs087-02/

  70. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, Dasgupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175

    Article  Google Scholar 

  71. Lane N (2010) The rollercoaster ride to an oxygen-rich world. New Scientist 205:2746

    Article  Google Scholar 

  72. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405

    Article  Google Scholar 

  73. Fan X, Hou J, Sun D, Xi S, Liu Z, Du J, Luo J, Tao C (2013) Mn-oxides catalyzed periodic current oscillation on the anode. Electrochim Acta 102:466–471

    Google Scholar 

  74. Olexová A, Melicherčík M, Treindl L (1997) Oscillatory oxidation of Mn(II) ions by hexacyanoferrates(III) and bistability in the reduction of MnO2 by hexacyanoferrates(II) in a CSTR. Chem Phys Lett 268:505–509

    Google Scholar 

  75. Tributsch H (1994) The challenge of non-linear and co-operative mechanisms for electrocatalysis. Electrochim Acta 39:1495–1502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuhei Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamaguchi, A., Takashima, T., Hashimoto, K., Nakamura, R. (2016). Water Splitting Using Electrochemical Approach. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics