Skip to main content

Selenium in Algae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Selenium (Se) is an essential trace element for many organisms in order to be required for the synthesis of selenoproteins although it is very toxic at high concentration. More than 40 selenoprotein families have been identified in diverse organisms, including bacteria, archaea and eukaryotes. In photosynthetic microorganisms such as microalgae, many selenoproteins have also been identified by using bioinformatics approaches. Essentiality of Se requirement was experimentally proved in several algae, such as haptophyte algae, that possess selenoproteins. On the other hand, all of them that possess selenoproteins do not always show Se essential requirement in certain microalgae, such as a green algae. Se presents as four inorganic forms of selenide (−2), selenium (0), selenite (+2) and selenite (+4) and organic selenium-containing compounds. This Chapter focuses on the function of Se, membrane transport system, intracellular accumulation, metabolism to non-toxic organic compounds, and then the synthesis of selenoproteins involving a selenocysteine in which Se is replaced with sulfur. Especially, this Chapter introduces a unique property of E. huxleyi (coccolithophore, haptophyte) that possess two pathways for Se-compound production, namely both animal-like property to synthesize selenoproteins and land plant-like property to synthesize non-toxic organic compounds pathways. Algae can be considered to have evolved their properties for obtaining high viability by adjusting their Se-metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

References

  • Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Res: Res Manage 1:205–211

    Article  Google Scholar 

  • Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891

    Article  CAS  PubMed  Google Scholar 

  • Araie H, Suzuki I, Shiraiwa Y (2008) Identification and characterization of a selenoprotein, thioredoxin reductase, in a unicellular marine haptophyte alga, Emiliania huxleyi. J Biol Chem 283:35329–35336

    Article  CAS  PubMed  Google Scholar 

  • Araie H, Sakamoto K, Suzuki I, Shiraiwa Y (2011) Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol 52:1204–1210

    Article  CAS  PubMed  Google Scholar 

  • Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Chapter  Google Scholar 

  • Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA (1984) Selenium containing amino acids and proteins in marine algae. Phytochemistry 23:2445–2452

    Article  CAS  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  PubMed  Google Scholar 

  • Cosper EM, Garry RT, Milligan AJ, Doall MH (1993) Iron, selenium and citric acid are critical to the growth of the brown tide microalga, Aureococcus anophagefferens. In: Smayda TJ, Shimazu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 667–674

    Google Scholar 

  • Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium: a re-evaluation. Limnol Oceanogr 29:1179–1192

    Article  CAS  Google Scholar 

  • Cutter GA, Cutter LS (2001) Sources and cycling of selenium in the western and equatorial Atlantic ocean. Deep Sea Res II 48:2917–2931

    Article  CAS  Google Scholar 

  • Danbara A, Shiraiwa Y (1999) The requirement of selenium for the growth of marine coccolithophorids, Emiliania huxleyi, Gephyrocapsa oceanica and Helladosphaera sp. (Prymnesiophyceae). Plant Cell Physiol 40:762–766

    Article  CAS  Google Scholar 

  • Doblin MA, Blackburn SI, Hallegraeff GM (1999) Comparative study of selenium requirements of three phytoplankton species: Gymnodinium catenatum, Alexandrium minutum (Dinophyta) and Chaetoceros cf. tenuissimus. J Plankton Res 21:1153–1169

    Article  CAS  Google Scholar 

  • Edvardsen E, Moy F, Paasche E (1990) emolytic activity in extracts of Chrysochromulina polylepsis grown at different levels of selenite and phosphate. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 284–289

    Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Fan TWM, Lane AN, Higashi RM (1997) Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environ Sci Technol 31:569–576

    Article  CAS  Google Scholar 

  • Fox JM (1992) Selenium: nutritional implications and prospects for therapeutic medicine. Methods Find Exp Clin Pharmacol 14:275–287

    CAS  PubMed  Google Scholar 

  • Gladyshev VN, Khangulov SV, Stadtman TC (1994) Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Proc Natl Acad Sci U S A 91:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, Lecleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci U S A 108:4352–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobler CJ, Lobanov AV, Tang Y-Z, Turanov AA, Zhang Y, Doblin M, Taylor GT, Sanudo-Wilhelmy SA, Grigoriev IV, Gladyshev VN (2013) The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens. ISME J 7:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungstenand selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130

    CAS  PubMed  Google Scholar 

  • Harrison PJ, Yu PW, Thompson PA, Price NM, Phillips DJ (1988) Survey of selenium requirements in marine phytoplankton. Mar Ecol Prog Ser 47:89–96

    Article  CAS  Google Scholar 

  • Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori H, Nakaguchi Y, Kimura M, Hiraki K (2001) Distribution of dissolved selenium species in the Eastern Indian Ocean. Bull Soc Sea Water Sci Jpn 55:175–182

    CAS  Google Scholar 

  • Hawkesford MJ, Davidian JC, Grignon C (1993) Sulfate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta 190:297–304

    Article  CAS  Google Scholar 

  • Hu M, Yang Y, Martin J-M, Yin K, Harrison PJ (1996) Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton. Mar Environ Res 44:225–231

    Article  Google Scholar 

  • Imai I, Itakura S, Matsuyama Y, Yamaguchi M (1996) Selenium requirement for growth of a novel red tide flagellate Chattonella verruculosa (Raphidophyceae) in culture. Fish Sci 62:834–835

    CAS  Google Scholar 

  • Ishimaru T, Takeuchi T, Fukuyo Y, Kodama M (1989) The selenium requirement of Gymnodinium nagasakiense. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, pp 357–360

    Google Scholar 

  • Kim H-Y, Fomenko DE, Yoon Y-E, Gladyshev VN (2006) Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry 45:13697–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krol A (2002) Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. Biochimie 84:765–774

    Article  CAS  PubMed  Google Scholar 

  • Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Hansen M, Fan T, Vahl M (2001) Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal At Spectrom 16:1403–1408

    Article  CAS  Google Scholar 

  • Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 285:32029–32037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Lindström K (1983) Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101:35–47

    Article  Google Scholar 

  • Lindström K, Rodhe W (1978) Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa. westii. Mitt Int Ver Theor Angew Limnol 21:168–173

    Google Scholar 

  • Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott JR, Rosen BP, Liu Z (2010) Jen1p: a high affinity selenite transporter in yeast. Mol Biol Cell 21:3934–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci U S A 94:7098–7102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoprotein and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata T, Shiraiwa Y (2005) A novel eukaryotic selenoprotein in the haptophyte alga Emiliania huxleyi. J Biol Chem 280:18462–18468

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Araie H, Shiraiwa Y (2004) Bioconcentration mechanism of selenium by a coccolithophorid, Emiliania huxleyi. Plant Cell Physiol 45:1434–1441

    Article  CAS  PubMed  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintner I, Provasoli L (1986) Heterotrophy in subdued light of three Chrysochromulina species. Bull Misaki Mar Biol Inst Kyoto Univ 12:25–31

    Google Scholar 

  • Price NM, Harrison PJ (1988) Specific selenium-containing macromolecules in the marine diatom Thalassiosira pseudonana. Plant Physiol 86:192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price NM, Thompson RA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana. J Phycol 23:1–9

    Article  CAS  Google Scholar 

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Emiliania huxleyi Annotation Consortium, Dacks JB, Delwiche CF, Dyhrman ST, Glöckner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    Google Scholar 

  • Reunova YA, Aizdaicher NA, Khristoforova NK, Reunov AA (2007) Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta). Russ J Mar Biol 33:125–132

    Article  CAS  Google Scholar 

  • Riedel GF, Sanders JG (1996) The influence of pH and media composition on the uptake of inorganic selenium by Chlamydomonas reinhardtii. Environ Toxicol Chem 15:1577–1583

    Article  CAS  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K (2004) Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A A101:16162–161617

    Article  Google Scholar 

  • Turanov AA, Xu X-M, Carlson BA, Yoo M-H, Gladyshev VN, Hatfield DL (2011) Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usup G, Azanza RV (1998) Physiology and bloom dynamics of the tropical dinoflagellate Pyrodinium bahamense (Dinophyceae). In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Heidelberg, pp 81–94

    Google Scholar 

  • Valente FMA, Oliveira ASF, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IAC (2005) Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem 10:667–682

    Article  CAS  PubMed  Google Scholar 

  • Wehr JD, Brown LM (1985) Selenium requirement of a bloom-forming planktonic alga from softwater and acidified lakes. Can J Fish Aquat Sci 42:1783–1788

    Article  CAS  Google Scholar 

  • Wheeler AE, Zingaro RA, Irgolic K, Bottino NR (1982) The effect of selenate, selenite and sulphate on the growth of six unicellular green algae. J Exp Mar Biol Ecol 57:181–194

    Article  CAS  Google Scholar 

  • Yokota A, Shigeoka T, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2 grown Chlamydomonas reinhardtii. Plant Physiol 86:645–651

    Article  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Araie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Araie, H., Shiraiwa, Y. (2016). Selenium in Algae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_12

Download citation

Publish with us

Policies and ethics