Selenium in Algae

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Selenium (Se) is an essential trace element for many organisms in order to be required for the synthesis of selenoproteins although it is very toxic at high concentration. More than 40 selenoprotein families have been identified in diverse organisms, including bacteria, archaea and eukaryotes. In photosynthetic microorganisms such as microalgae, many selenoproteins have also been identified by using bioinformatics approaches. Essentiality of Se requirement was experimentally proved in several algae, such as haptophyte algae, that possess selenoproteins. On the other hand, all of them that possess selenoproteins do not always show Se essential requirement in certain microalgae, such as a green algae. Se presents as four inorganic forms of selenide (−2), selenium (0), selenite (+2) and selenite (+4) and organic selenium-containing compounds. This Chapter focuses on the function of Se, membrane transport system, intracellular accumulation, metabolism to non-toxic organic compounds, and then the synthesis of selenoproteins involving a selenocysteine in which Se is replaced with sulfur. Especially, this Chapter introduces a unique property of E. huxleyi (coccolithophore, haptophyte) that possess two pathways for Se-compound production, namely both animal-like property to synthesize selenoproteins and land plant-like property to synthesize non-toxic organic compounds pathways. Algae can be considered to have evolved their properties for obtaining high viability by adjusting their Se-metabolism.

Keywords

Function of selenium Haptophyte algae Micronutrients Nutritional essentiality of Selenium Selenium metabolism Selenium requirement Selenoprotein Selenium uptake Selenium-utilization strategy Selenium-requiring microalgae Selenocysteine/Selenoenzyme 21st proteinogenic amino acid 

References

  1. Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Res: Res Manage 1:205–211CrossRefGoogle Scholar
  2. Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891CrossRefPubMedGoogle Scholar
  3. Araie H, Suzuki I, Shiraiwa Y (2008) Identification and characterization of a selenoprotein, thioredoxin reductase, in a unicellular marine haptophyte alga, Emiliania huxleyi. J Biol Chem 283:35329–35336CrossRefPubMedGoogle Scholar
  4. Araie H, Sakamoto K, Suzuki I, Shiraiwa Y (2011) Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol 52:1204–1210CrossRefPubMedGoogle Scholar
  5. Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087CrossRefGoogle Scholar
  6. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681CrossRefGoogle Scholar
  7. Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA (1984) Selenium containing amino acids and proteins in marine algae. Phytochemistry 23:2445–2452CrossRefGoogle Scholar
  8. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599CrossRefPubMedGoogle Scholar
  9. Cosper EM, Garry RT, Milligan AJ, Doall MH (1993) Iron, selenium and citric acid are critical to the growth of the brown tide microalga, Aureococcus anophagefferens. In: Smayda TJ, Shimazu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 667–674Google Scholar
  10. Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium: a re-evaluation. Limnol Oceanogr 29:1179–1192CrossRefGoogle Scholar
  11. Cutter GA, Cutter LS (2001) Sources and cycling of selenium in the western and equatorial Atlantic ocean. Deep Sea Res II 48:2917–2931CrossRefGoogle Scholar
  12. Danbara A, Shiraiwa Y (1999) The requirement of selenium for the growth of marine coccolithophorids, Emiliania huxleyi, Gephyrocapsa oceanica and Helladosphaera sp. (Prymnesiophyceae). Plant Cell Physiol 40:762–766CrossRefGoogle Scholar
  13. Doblin MA, Blackburn SI, Hallegraeff GM (1999) Comparative study of selenium requirements of three phytoplankton species: Gymnodinium catenatum, Alexandrium minutum (Dinophyta) and Chaetoceros cf. tenuissimus. J Plankton Res 21:1153–1169CrossRefGoogle Scholar
  14. Edvardsen E, Moy F, Paasche E (1990) emolytic activity in extracts of Chrysochromulina polylepsis grown at different levels of selenite and phosphate. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 284–289Google Scholar
  15. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279CrossRefPubMedGoogle Scholar
  16. Fan TWM, Lane AN, Higashi RM (1997) Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environ Sci Technol 31:569–576CrossRefGoogle Scholar
  17. Fox JM (1992) Selenium: nutritional implications and prospects for therapeutic medicine. Methods Find Exp Clin Pharmacol 14:275–287PubMedGoogle Scholar
  18. Gladyshev VN, Khangulov SV, Stadtman TC (1994) Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Proc Natl Acad Sci U S A 91:232–236CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, Lecleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci U S A 108:4352–4357CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gobler CJ, Lobanov AV, Tang Y-Z, Turanov AA, Zhang Y, Doblin M, Taylor GT, Sanudo-Wilhelmy SA, Grigoriev IV, Gladyshev VN (2013) The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens. ISME J 7:1333–1343CrossRefPubMedPubMedCentralGoogle Scholar
  21. Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungstenand selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130PubMedGoogle Scholar
  22. Harrison PJ, Yu PW, Thompson PA, Price NM, Phillips DJ (1988) Survey of selenium requirements in marine phytoplankton. Mar Ecol Prog Ser 47:89–96CrossRefGoogle Scholar
  23. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hattori H, Nakaguchi Y, Kimura M, Hiraki K (2001) Distribution of dissolved selenium species in the Eastern Indian Ocean. Bull Soc Sea Water Sci Jpn 55:175–182Google Scholar
  25. Hawkesford MJ, Davidian JC, Grignon C (1993) Sulfate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta 190:297–304CrossRefGoogle Scholar
  26. Hu M, Yang Y, Martin J-M, Yin K, Harrison PJ (1996) Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton. Mar Environ Res 44:225–231CrossRefGoogle Scholar
  27. Imai I, Itakura S, Matsuyama Y, Yamaguchi M (1996) Selenium requirement for growth of a novel red tide flagellate Chattonella verruculosa (Raphidophyceae) in culture. Fish Sci 62:834–835Google Scholar
  28. Ishimaru T, Takeuchi T, Fukuyo Y, Kodama M (1989) The selenium requirement of Gymnodinium nagasakiense. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, pp 357–360Google Scholar
  29. Kim H-Y, Fomenko DE, Yoon Y-E, Gladyshev VN (2006) Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry 45:13697–13704CrossRefPubMedPubMedCentralGoogle Scholar
  30. Krol A (2002) Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. Biochimie 84:765–774CrossRefPubMedGoogle Scholar
  31. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443CrossRefPubMedGoogle Scholar
  33. Larsen EH, Hansen M, Fan T, Vahl M (2001) Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal At Spectrom 16:1403–1408CrossRefGoogle Scholar
  34. Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 285:32029–32037CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102CrossRefPubMedGoogle Scholar
  36. Lindström K (1983) Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101:35–47CrossRefGoogle Scholar
  37. Lindström K, Rodhe W (1978) Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa. westii. Mitt Int Ver Theor Angew Limnol 21:168–173Google Scholar
  38. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198CrossRefPubMedPubMedCentralGoogle Scholar
  39. McDermott JR, Rosen BP, Liu Z (2010) Jen1p: a high affinity selenite transporter in yeast. Mol Biol Cell 21:3934–3941CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci U S A 94:7098–7102CrossRefPubMedPubMedCentralGoogle Scholar
  41. Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoprotein and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693CrossRefPubMedPubMedCentralGoogle Scholar
  42. Obata T, Shiraiwa Y (2005) A novel eukaryotic selenoprotein in the haptophyte alga Emiliania huxleyi. J Biol Chem 280:18462–18468CrossRefPubMedGoogle Scholar
  43. Obata T, Araie H, Shiraiwa Y (2004) Bioconcentration mechanism of selenium by a coccolithophorid, Emiliania huxleyi. Plant Cell Physiol 45:1434–1441CrossRefPubMedGoogle Scholar
  44. Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pintner I, Provasoli L (1986) Heterotrophy in subdued light of three Chrysochromulina species. Bull Misaki Mar Biol Inst Kyoto Univ 12:25–31Google Scholar
  46. Price NM, Harrison PJ (1988) Specific selenium-containing macromolecules in the marine diatom Thalassiosira pseudonana. Plant Physiol 86:192–199CrossRefPubMedPubMedCentralGoogle Scholar
  47. Price NM, Thompson RA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana. J Phycol 23:1–9CrossRefGoogle Scholar
  48. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Emiliania huxleyi Annotation Consortium, Dacks JB, Delwiche CF, Dyhrman ST, Glöckner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213Google Scholar
  49. Reunova YA, Aizdaicher NA, Khristoforova NK, Reunov AA (2007) Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta). Russ J Mar Biol 33:125–132CrossRefGoogle Scholar
  50. Riedel GF, Sanders JG (1996) The influence of pH and media composition on the uptake of inorganic selenium by Chlamydomonas reinhardtii. Environ Toxicol Chem 15:1577–1583CrossRefGoogle Scholar
  51. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100CrossRefPubMedGoogle Scholar
  52. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K (2004) Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A A101:16162–161617CrossRefGoogle Scholar
  53. Turanov AA, Xu X-M, Carlson BA, Yoo M-H, Gladyshev VN, Hatfield DL (2011) Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2:122–128CrossRefPubMedPubMedCentralGoogle Scholar
  54. Usup G, Azanza RV (1998) Physiology and bloom dynamics of the tropical dinoflagellate Pyrodinium bahamense (Dinophyceae). In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Heidelberg, pp 81–94Google Scholar
  55. Valente FMA, Oliveira ASF, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IAC (2005) Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem 10:667–682CrossRefPubMedGoogle Scholar
  56. Wehr JD, Brown LM (1985) Selenium requirement of a bloom-forming planktonic alga from softwater and acidified lakes. Can J Fish Aquat Sci 42:1783–1788CrossRefGoogle Scholar
  57. Wheeler AE, Zingaro RA, Irgolic K, Bottino NR (1982) The effect of selenate, selenite and sulphate on the growth of six unicellular green algae. J Exp Mar Biol Ecol 57:181–194CrossRefGoogle Scholar
  58. Yokota A, Shigeoka T, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2 grown Chlamydomonas reinhardtii. Plant Physiol 86:645–651CrossRefGoogle Scholar
  59. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations