Skip to main content

Kinetics of Microbial Death and Factors for Quality Attributes

  • Chapter
  • First Online:
Thermal Processing of Packaged Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

The successful thermal processing of packaged food products requires sufficient heat to inactivate microorganisms, both those which cause spoilage and those which cause food poisoning. For this purpose it is necessary to know how heat-resistant microorganisms are in order to establish a time and temperature for achieving the objective. In the canning trade this time and temperature relationship is known as the process and should not be confused with the sequence of engineering operations. The heat applied to the food product not only inactivates microorganisms but also facilitates the cooking of the product to give an acceptable texture and destroys active enzymes. In addition, it has the effect of destroying the nutrients, color, and other quality attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham G, Debray E, Candau Y, Piar G (1990) Mathematical model of thermal destruction of Bacillus stearothermophilus spores. Appl Environ Microbiol 56(10):3073–3080

    CAS  Google Scholar 

  • Aiba S, Toda K (1967) Thermal death rate of bacterial spores. Process Biochem 2(2):35–40

    Google Scholar 

  • Albert I, Mafart P (2005) A modified Weibull model for bacterial inactivation. Int J Food Microbiol 100(1–3):197–211

    Article  CAS  Google Scholar 

  • Adams JB (1978) The inactivation and regeneration of peroxidase in relation to HTST processing of vegetables. J Food Technol 13:281–293

    Article  CAS  Google Scholar 

  • Ávila IMLB, Silva CLM (1999) Modelling kinetics of thermal degradation of colour in peach puree. J Food Eng 39(2):161–166

    Article  Google Scholar 

  • Awuah GB, Ramaswamy HS, Economides A (2007) Thermal processing and quality: principles and overview. Chem Eng Process 46:584–602

    Article  CAS  Google Scholar 

  • Anderson WF, McClure PJ, Baird-Parker AC, Cole MB (1996) The application of a log-logistic model to describe the thermal inactivation of C. boulinum 213B at temperatures below 121.1°C. J Appl Bacteriol 80:283–290

    Article  CAS  Google Scholar 

  • Arabshahi A, Lund DB (1985) Considerations in calculating kinetic parameters from experimental data. J Food Process Eng 7:239–251

    Article  CAS  Google Scholar 

  • Arrhenius SA (1889) Influence of temperature on the rate of inversion of sucrose. Z Phys Chem 4:226

    Article  Google Scholar 

  • Atkins PW, Paula J d (2014) Physical chemistry, 10th edn. Oxford University Press, London

    Google Scholar 

  • Ball CO (1923) Thermal process time for canned food. Bull Nat Res Council 7(37):9–76

    Google Scholar 

  • Ball CO, Olson FCW (1957) Sterilization in food technology—theory, practice and calculations. McGraw-Hill, New York

    Google Scholar 

  • Banks BEC, Damjanovic V, Vernon CA (1972) The so-called thermodynamic compensation law and thermal death. Nature 240(5377):147–148

    Article  CAS  Google Scholar 

  • Belehradek J (1926) Influence of temperature on biological processes. Nature 118:117–118

    Article  CAS  Google Scholar 

  • Bigelow WD (1921) The logarithmic nature of the thermal death time curves. J Infect Dis 29:528–536

    Article  Google Scholar 

  • Bigelow WD, Esty JR (1920) Thermal death point in relation to time of typical thermophilic organisms. J Infect Dis 27:602–617

    Article  Google Scholar 

  • Boon MR (1973) Thermodynamic compensation rule. Nature 243:401

    Article  Google Scholar 

  • Brown KL, Gaze JE, McClement RH, Withers P (1988) Construction of a computer-controlled thermoresistometer for the determination of the heat resistance of bacterial spores over the temperature range 100–150°C. Int J Food Sci Technol 23:361–371

    Article  Google Scholar 

  • Brown KL (1991) Principles of heat preservation. In: Rees JAG, Bettison J (eds) Processing and packaging of heat preserved foods. Blackie, Glasgow and London

    Google Scholar 

  • Brown KL (1992a) Heat resistance of bacterial spores. Ph.D. Thesis, University of Nottingham, UK

    Google Scholar 

  • Brown KL (1992b) Practical and theoretical aspects of the death kinetics of microorganisms—alternatives to D and z concept. Technical Bulletin No. 92. Campden BRI, Chipping Campden, Glos, UK

    Google Scholar 

  • Buera MP, Chirife J, Resnik SL, Lozano RD (1987a) Nonenzymatic browning in liquid model systems of high water activity: kinetics of colour changes due to caramelization of various single sugars. J Food Sci 52(4):1059–1062, 1073

    Article  Google Scholar 

  • Buera MP, Chirife J, Resnik SL, Wetzler G (1987b) Nonenzymatic browning in liquid model systems of high water activity: kinetics of colour changes due to Maillard’s reaction between different single sugars and glycine and comparison with caramelization browning. J Food Sci 52(4):1063–1067

    Article  Google Scholar 

  • Burton H (1988) UHT processing of milk and milk products. Elsevier Applied Science, London

    Google Scholar 

  • Cho H-Y, Pyun Y-R (1994) Prediction of kinetic parameters for food quality changes using equivalent time at standard temperature. In: Developments in food engineering, Part 1. Blackie, Glasgow and London, pp 453–455

    Chapter  Google Scholar 

  • Cohen E, Saguy I (1985a) Statistical evaluation of Arrhenius model and its applicability to food quality losses. J Food Process Preserv 9:273–290

    Article  Google Scholar 

  • Cronin K, Mackey D, Cregan V, O’brien S, Gleeson JP, Abodayeh K (2007) Selection of processing temperature to minimize product temperature variability in food heating processes. Food Bioprod Process, Trans IChemE Part C 85(C4):344–353

    Article  Google Scholar 

  • Cunha LM, Oliviera FAR (2000) Optimal experimental design for estimating the kinetic parameters of processes described by the first-order Arrhenius model undergoing linearly increasing temperature profiles. J Food Eng 46(1):53–60

    Article  Google Scholar 

  • Cunha LM, Oliveira FAR, Brandão TRS, Oliveira JC (1997a) Optimal experimental design for estimating the kinetic parameters of the Bigelow model. J Food Eng 33(1/2):111–128

    Article  Google Scholar 

  • Campanella OH, Peleg M (2001) Theoretical comparison of a new and traditional method to calculate C. botulinum survival during thermal inactivation. J Sci Food Agric 81:1069–1076

    Article  CAS  Google Scholar 

  • Campanella OH, Chen G (2008) On-line correction of in-pack processing of foods and validation of automated processes to improve product quality. In: Richardson P (ed) In-pack processed foods—improving quality. Woodhead Publishing Ltd., Cambridge, UK, pp 154–185

    Chapter  Google Scholar 

  • Casadei MA, Gaze J (1994) Practical and theoretical aspects of the death kinetics of micro-organisms: alternatives to the D and z concept. Technical Memo. No. 706. Campden BRI, Chipping Campden, Glos, UK

    Google Scholar 

  • Casolari A (1979) Uncertainties as to the kinetics of heat inactivation of microorganisms. In: Proceedings international meeting—food microbiology and technology, Parma, Italy, pp. 231–238

    Google Scholar 

  • Casolari A (1981) A model describing microbiological inactivation and growth kinetics. J Theor Biol 88:1–34

    Article  CAS  Google Scholar 

  • Chiruta J, Davey KR, Thomas CJ (1997) Thermal inactivation kinetics for three vegetative bacteria as influenced by combined temperature and pH in liquid medium. Food Bioprod Process 75(C3):174–180

    Article  Google Scholar 

  • Cerf O (1977) A review: tailing of survival curves of bacterial spores. J Appl Bacteriol 13(6):851–857

    Google Scholar 

  • Cleland AC, Robertson GL (1985) Determination of thermal processes to ensure commercial sterility of canned foods. In: Thorne S (ed) Developments in food preservation—3. Applied Science Publishers, London

    Google Scholar 

  • Cohen E, Saguy I (1985b) Statistical evaluation of Arrhenius model and its applicability to food quality losses. J Food Process Preserv 9:273–290

    Article  Google Scholar 

  • Cole MB, Jones MV (1990) A submerged-coil heating apparatus for investigating thermal inactivation of micro-organisms. Lett Appl Microbiol 11:233–235

    Article  Google Scholar 

  • Corradini MG, Normand MD, Peleg M (2005) Calculating the efficacy of heat sterilization processes. J Food Eng 67(1/2):59–69

    Article  Google Scholar 

  • Corradini MG, Normand MD, Peleg M (2006) On expressing equivalence of non-isothermal heat sterilization processes. J Sci Food Agric 68(5):785–792

    Article  CAS  Google Scholar 

  • Corradini MG, Normand MD, Peleg M (2009) Direct calculation of survival ratio and isothermal time equivalent in heat preservation processes. In: Simpson R (ed) Engineering aspects of food processing. CRC Press, Boca Raton, FL, pp 211–230

    Google Scholar 

  • Cowell ND (1968) Methods of thermal process evaluation. J Food Technol 3:303–304

    Article  Google Scholar 

  • Cunha LM, Oliveira FAR, Brandão TRS, Oliveira JC (1997b) Optimal experimental design for estimating the kinetic parameters of the Bigelow model. J Food Eng 33(1/2):111–128

    Article  Google Scholar 

  • Datta AK (1993) Error estimates for kinetic parameters used in the food literature. J Food Eng 18(2):181–199

    Article  Google Scholar 

  • Davey K (1993a) Linear-Arrhenius models for bacterial growth and death and vitamin denaturations. J Ind Microbiol 12:172–179

    Article  CAS  Google Scholar 

  • Davey KR (1993b) Extension of the generalized sterilization chart for combined temperature and pH. Lebensm Wiss Technol 26(5):476–479

    Article  Google Scholar 

  • Davey KR (1994) Modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol 23:295–303

    Article  CAS  Google Scholar 

  • Davey K, Hall RF, Thomas CJ (1995) Experimental and model studies of the combined effect of temperature and pH on the thermal sterilization of vegetative bacteria in liquid. Food Bioprod Process, Trans IChemE 73(C3):127–132

    Google Scholar 

  • Davey KR, Cerf O (1996) Predicting concomitant denaturation of vitamin as influenced by combined process temperature and pH in Batch and continuous flow sterilization of liquids. Food Bioprod Process, Trans IChemE 74(C4):200–206

    Article  CAS  Google Scholar 

  • Davey KR, Thomas CJ, Cerf O (2001) Thermal death of bacteria. J Appl Microbiol 90(1):148–150

    Article  CAS  Google Scholar 

  • Dickerson RW Jr (1969) Simplified equations for calculating lethality of the heating and cooling phases of thermal inactivation determinations. Food Technol 23(3):108–111

    Google Scholar 

  • Dolan KD (2003) Estimation of kinetic parameters for non-isothermal food processes. J Food Sci 68(3):728–741

    Article  CAS  Google Scholar 

  • Dolan KD, Yang L, Trampel CP (2007) Nonlinear regression technique to estimate kinetic parameters and confidence intervals in unsteady-state conduction-heated foods. J Food Eng 80(2):581–593

    Article  Google Scholar 

  • Esty JR, Meyer KF (1922) The heat resistance of spores of B. botulinus in canned foods. J Infect Dis 31:650–663

    Article  Google Scholar 

  • Feliciotti E, Esselen WB (1957) Thermal destruction rate of thiamine in pureed meat and vegetables. Food Technol 11:77–84

    CAS  Google Scholar 

  • Gaillard S, Leguérinel I, Mafart P (1998) Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. J Food Sci 63(5):887–889

    Article  CAS  Google Scholar 

  • Gaze JE, Brown KL (1990) Comparative heat resistance studies on spores of Clostridium botulinum, Clostridium sporogenes, and Bacillus stearothermophilus: thermoresistometer studies and Bacillus datafile. Technical Memorandum No. 568. Campden BRI, Chipping Campden, Glos, UK

    Google Scholar 

  • Geeraerd AH, Valdramidis VP, Bernaerts K, Van Impe JF (2004) Evaluating microbial inactivation models for thermal processing. In: Richardson P (ed) Improving the thermal processing of food. Woodhead Publishing Ltd., Cambridge, UK, pp 427–453

    Chapter  Google Scholar 

  • Gillespy TG (1946) The heat resistance of spores of thermophilic bacteria I. Annual Report 1946. Campden BRI, Chipping Campden, Glos, UK, pp. 40–49

    Google Scholar 

  • Gillespy TG (1947) The heat resistance of spores of thermophilic bacteria II. Thermophilic anaerobes. Annual Report 1947. Campden BRI, Chipping Campden, Glos, UK, pp. 40–51

    Google Scholar 

  • Gillespy TG (1948) The heat resistance of spores of thermophilic bacteria III. Annual Report 1948. Campden BRI, Chipping Campden, Glos, UK, pp. 34–43

    Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York and London, pp 1–27

    Google Scholar 

  • Greenwood DA, Kraybill HR, Feaster JF, Jackson JM (1944) Vitamin retention in processed meat. Ind Eng Chem 36:922–927

    Article  CAS  Google Scholar 

  • Haas J, Bultermann RB, Schubert H (1994) Determination of the thermal death kinetics of bacterial spores by indirect heating methods. In: Yano T, Matsuno R, Nakamura K (eds) Developments in food engineering ICEF 6 Part 2 (pp. 698–700) Kyoto University

    Google Scholar 

  • Hachigian J (1989) An experimental design for determination of D-values describing inactivation kinetics of bacterial spores; design parameters selected for using computer simulation. J Food Sci 54(3):720–726

    Article  Google Scholar 

  • Hallström B, Skjöldebrand C, Trägärdh C (1988) Heat transfer and food Products. Elsevier Applied Science, London

    Google Scholar 

  • Haralumpu SG, Saguy I, Karel M (1985a) Estimation of Arrhenius model parameters using three least-squares methods. J Food Process Preserv 9:129–143

    Article  Google Scholar 

  • Haralumpu SG, Saguy I, Karel M (1985b) Estimation of Arrhenius model parameters using three least-squares methods. J Food Process Preserv 9:129–143

    Article  Google Scholar 

  • Harris PS (1973) Compensation effect and experimental error. Nature 243:401–402

    Article  Google Scholar 

  • Hayakawa K (1969) New parameters for calculating mass average sterilizing value to estimate nutrients in thermally conductive food. Can Inst Food Sci Technol J 2:165–172

    Article  Google Scholar 

  • Hayakawa K (1982) Empirical formulae for estimating nonlinear survivor curves of thermally vulnerable factors. Can Inst Food Sci Technol J 15(2):116–119

    Article  Google Scholar 

  • Hayakawa K, Schnell PG, Kleyn DH (1969) Estimating thermal death time characteristics of thermally vulnerable factors by programmed heating of sample solution or suspension. Food Technol 23:1090–1095

    Google Scholar 

  • Hayakawa K (1977) Review of computerized prediction of nutrients in thermally processed canned food. J Assoc Off Anal Chem 60(6):1243–1247

    CAS  Google Scholar 

  • Hayakawa K, Timbers GE, Steir EF (1977) Influence of heat treatment on the quality of vegetables: organoleptic quality. J Food Sci 42:1286–1289

    Article  Google Scholar 

  • Hayakawa K, Matsuda N, Komaki K, Matsunawa K (1981) Computerized estimation of reaction kinetic parameters for thermal inactivation of micro-organisms. Lebensm Wiss Technol 14:70–78

    Google Scholar 

  • Hersom AC, Hulland ED (1980) Canned foods. Thermal processing and microbiology, 7th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Hicks EW (1961) Uncertainties in canning process calculations. Food Res 32(6):218–223

    Article  Google Scholar 

  • Hill CG Jr, Grieger-Block RA (1980) Kinetic data: generation, interpretation and use. Food Technol 34(2):56–66

    Google Scholar 

  • Holdsworth SD (1992) Aseptic processing and packaging of food products. Elsevier Applied Science, London

    Google Scholar 

  • Holdsworth SD, Overington WJG (1975) Calculation of the sterilizing value of food canning processes. Technical Bulletin No. 28. Campden BRI, Chipping Campden, Glos, UK

    Google Scholar 

  • Horak FP, Kessler HG (1981) Thermal destruction of thiamine—a second order reaction. Z Lebensm Untersuch Forsch 172:1–6

    Article  Google Scholar 

  • Ito KA, Chen JK (1978) Effect of pH on growth of Clostridium botulinum in foods. Food Technol 32(6):71–72, 76

    Google Scholar 

  • Jakobsen F (1954) Notes on process evaluation. Food Res 19:66–79

    Article  Google Scholar 

  • Jiménez N, Bohuon P, Dornier M, Bonazzi C, Vaillant F (2011) Interest of modeling heat transfer inside a reactor to estimate kinetic parameters. In: Conf. proc. ICEF 11, Athens, Greece

    Google Scholar 

  • Jones MC (1968) The temperature dependence of the lethal rate in sterilization calculations. J Food Technol 3:31–38

    Article  Google Scholar 

  • Jonsson U, Snygg BG, Harnulv BG, Zachrisson T (1977) Testing two models for the temperature dependence of the heat inactivation of Bacillus stearothermophilus spores. J Food Sci 42:1251–1252, 1263

    Article  Google Scholar 

  • Kaplan AM, Reynolds H, Lichtenstein H (1954) Significance of the variations in observed slopes of thermal death time curves for putrefactive anaerobes. Food Res 19:173–179

    Article  Google Scholar 

  • Karplus M, Porter RN, Sharma RD (1965) Exchange reactions with activation energy. J Chem Phys 43:3259

    Article  CAS  Google Scholar 

  • Katzin LI, Sandholzer LA, Strong ME (1942) Application of the decimal reduction principle to a study of the heat resistance of coliform bacteria to pasteurization. J Bacteriol 45:265–272

    Google Scholar 

  • Kemeny G, Rosenberg B (1973) Compensation law in thermodynamics and thermal death. Nature 243:400–401

    Article  Google Scholar 

  • Khoo KY, Davey KR, Thomas CJ (2003) Assessment of four model forms for predicting thermal inactivation kinetics of Escherichia coli in liquid as affected by combined exposure time, liquid temperature and pH. Food Bioprod Process, Trans IChemE 81(C2):129–137

    Article  Google Scholar 

  • Kilsby DC, Davies KW, McClure PJ, Adair C, Anderson WA (2000) Bacterial thermal death kinetics based on probability distributions; the heat destruction of C. Botulinum and Salmonella Bedford. J Food Protect 63(9):1197–1203

    Article  CAS  Google Scholar 

  • Körmendy I, Körmendy L (1997) Considerations for calculating heat inactivation processes when semilogarithmic thermal inactivation models are non-linear. J Food Eng 34(1):33–40

    Article  Google Scholar 

  • Körmendy I, Körmendy L, Ferenczy A (1998) Thermal inactivation kinetics of mixed microbial populations. A hypothesis paper. J Food Eng 38(4):439–453

    Article  Google Scholar 

  • Körmendy I, Mohácsi-Farkas C (2000) Heat treatment and defective units’ ratio: surviving active spores in pea puree. J Food Eng 45(4):225–230

    Article  Google Scholar 

  • Laing BM, Schuelter DL, Labuza TP (1978) Degradation kinetics of ascorbic acid at high temperatures. J Food Sci 43(5):1440–1443

    Article  Google Scholar 

  • Leeson JA (1957) The inactivation of enzymes by heat: a review of the evidence for the regeneration of enzymes. Scientific Bulletin No. 2. Campden & Chorleywood Food Research Association, Chipping Campden, UK

    Google Scholar 

  • Lenz MK, Lund DB (1977) The lethality-Fourier number method. Confidence intervals for calculated lethality and mass-average retention of conduction-heating canned foods. J Food Sci 42:1002–1007

    Article  Google Scholar 

  • Lenz MK, Lund DB (1980) Experimental procedures for determining destruction kinetics of food components. Food Technol 34(2):51–55

    CAS  Google Scholar 

  • Lewis JC (1956) The estimation of decimal reduction times. Appl Microbiol 4:211–214

    CAS  Google Scholar 

  • Lund DB (1977) Design of thermal processes for maximizing nutrient retention. Food Technol 31(2):71–75

    Google Scholar 

  • Lund DB (1975) Effects of blanching, pasteurization and sterilization on nutrients. In: Harris RE, Karamas E (eds) Nutritional evaluation of food processing, 2nd edn. AVI, Westport, CT

    Google Scholar 

  • Lund DB (1978) Statistical analysis of thermal process calculations. Food Technol 32(3):76–78, 83

    Google Scholar 

  • Lund DB (1983) Influence of variations of reaction kinetic parameters and in heat transfer parameters on process lethality. In: Motohiro T, Hayakawa K (eds) Heat sterilization of food. Koseicha-Koseikaku, Tokyo, pp 165–171

    Google Scholar 

  • Mansfield T (1974) A brief study of cooking. Food & Machinery Corporation, San José, CA

    Google Scholar 

  • Mauri LM, Alzamora SM, Chirife J, Tomio MJ (1989) Review: Kinetic parameters for thiamine degradation in foods and model solutions of high water activity. Int J Food Sci Technol 24:1–30

    Article  CAS  Google Scholar 

  • McMeekin TA, Olley JN, Ross T, Ratkowsky DA (1993a) Predictive microbiology—theory and application. Research Studio Press, Taunton, UK

    Google Scholar 

  • McMeekin TA, Olley JN, Ross T, Ratkowsky DA (1993b) Predictive microbiology—theory and application. Research Studio Press, Taunton, UK

    Google Scholar 

  • Machmerth W (1983) Theoretical basis and optimization of thermal sterilization. J.A. Barth, Leipzig

    Google Scholar 

  • Mafart P (1999) Modelling the heat destruction of micro-organisms. Sci Alim 19(2):131–146

    Google Scholar 

  • Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol 72:107–113

    Article  CAS  Google Scholar 

  • Mafart P, Leguérinel I (1999) Modeling combined effects of temperature and pH on heat resistance of spores by a linear-Bigelow equation. J Food Sci 63(1):6–8

    Article  Google Scholar 

  • Malmborg A (1983) Application of theories for the kinetics of inactivation of microorganisms. In: McLoughlin JV, McKenna BM (eds) Proc. 6th international congress—food science and technology. Boole, Dublin

    Google Scholar 

  • Manji B, Van De Voort FR (1985) Comparison of two models for process holding time calculations, convection system. J Food Protection 48(4):359–363

    Article  Google Scholar 

  • Moore WJ (1972) Physical chemistry. Longmans, London

    Google Scholar 

  • McClure P (2008) Emerging pathogens of concern in in-pack heat-processed foods. In: Richardson P (ed) In-Pack processed foods—improving quality. Woodhead Publishing Ltd., Cambridge, UK, pp 229–250

    Chapter  Google Scholar 

  • Moore WJ (1983) Basic physical chemistry. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Mycock G (2002) Heat process evaluation and non-linear kinetics. In: Tucker GS (ed) Second international symposium on thermal processing—thermal processing: validation challenges (Session 2:1). Campden BRI, Chipping Campden, UK

    Google Scholar 

  • Nasri H, Simpson R, Bouzas J, Torres JA (1993) An unsteady-state method to determine kinetic parameters for heat inactivation of quality factors: conduction-heated foods. J Food Eng 19:291–301

    Article  Google Scholar 

  • Navani SK, Scholefield J, Kibby MR (1970) A digital computer program for the statistical analysis of heat resistance data applied to Bacillus stearothermophilus spores. J Appl Bacteriol 33(4):609–620

    Article  CAS  Google Scholar 

  • Nunes RV, Rhim JW, Swartzel KR (1991) Kinetic parameter evaluation with linearly increasing temperature profiles: integral methods. J Food Sci 56:1433–1437

    Article  Google Scholar 

  • Nunes RV, Swartzel KR, Ollis DF (1993) Thermal evaluation of food process: the role of reference temperature. J Food Eng 20:1–15

    Article  Google Scholar 

  • Ocio MJ, Rhim PS, Alvarruiz A, Martinez A (1994) Comparison of TDT and Arrhenius models for rate constant inactivation predictions of Bacillus stearothermophilus heated in mushroom-alginate substrate. Lett Appl Microbiol 19:114–117

    Article  CAS  Google Scholar 

  • Ohlsson T (1980) Temperature dependence of sensory quality changes during thermal processing. J Food Sci 45:836–839, 847

    Article  Google Scholar 

  • Patino H, Heil JR (1985) A statistical approach to error analysis in thermal process calculations. J Food Sci 50(4):1110–1114

    Article  Google Scholar 

  • Paulus KO (1984) Cooking kinetics: models and knowledge. In: Mckenna BM (ed) Engineering and food, vol 1. Elsevier Applied Science, London, pp 99–108

    Google Scholar 

  • Peleg M, Cole MB (1998) Reinterpretation of microbial survival curve. Crit Rev Food Sci Nutr 38(5):353–380

    Article  CAS  Google Scholar 

  • Peleg M, Penchina CM (2000) Modeling microbial survival during exposure to a lethal agent with varying intensity. Crit Rev Food Sci Nutr 40(2):159–172

    Article  CAS  Google Scholar 

  • Peleg M, Engel R, Gonzáles-Martinez C, Corradini MG (2002) Non Arrhenius and non-WLF kinetics in food systems. J Sci Food Agric 82:1346–1355

    Article  CAS  Google Scholar 

  • Peleg M (2003a) Microbiological survivor curves: interpretation, mathematical modeling and utilization. Comments Theor Biol 8:357–387

    Article  Google Scholar 

  • Peleg M (2003b) Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isotherms semi-logarithmic survival curves. Crit Rev Food Sci Nutr 43(6):353–380

    Article  Google Scholar 

  • Peleg M (2003c) Modeling applied to processes: the case of thermal preservation. In: Zeuthen P, Bøgh-Sørensen L (eds) Food preservation techniques. Woodhead Publishing, Cambridge, UK, pp 507–522

    Chapter  Google Scholar 

  • Peleg M (2004) Analyzing the effectiveness of microbial inactivation in thermal processing. In: Richardson P (ed) Improving the thermal processing of foods. Woodhead Publishing, Cambridge, pp 411–426

    Chapter  Google Scholar 

  • Perkin AG, Burton H, Underwood HM, Davies FL (1977) Thermal death kinetics of B. stearothermophilus spores at ultra-high temperatures. II. Effect of heating period on experimental results. J Food Technol 12:131–138

    Article  Google Scholar 

  • Pflug IJ (1982) Microbiology and engineering of sterilization processes, 5th edn. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Prentice RL (1976) A generalization of the probit and logit methods for dose response curves. Biometrics 32:761–768

    Google Scholar 

  • Ramaswamy HS, Van De Voort FR, Ghazala S (1989) An analysis of TDT and Arrhenius methods for handling process and kinetic data. J Food Sci 54(5):1322–1326

    Article  Google Scholar 

  • Rao MA, Lund DB (1986) Kinetics of thermal softening of foods—a review. J Food Process Preserv 10:311–329

    Article  Google Scholar 

  • Rodrigo M, Martinez A, Sanchez T, Peris MJ, Safon J (1993) Kinetics of Clostridium sporogenes PA 3679 spore destruction using computer-controlled thermoresistometer. J Food Sci 58(3):649–652

    Article  Google Scholar 

  • Rodriguez AC, Smerage GH, Teixeira AA, Busta FF (1988) Kinetic effects of lethal temperatures on population dynamics of bacterial spores. Trans ASAE 31(5):1594–1601

    Article  Google Scholar 

  • Rudra SG, Singh H, Basu S, Shivhare US (2008) Enthalpy entropy compensation during thermal degradation of chlorophyll in mint and coriander puree. J Food Eng 86(3):379–387

    Article  CAS  Google Scholar 

  • Sadeghi F, Swartzel KR (1990) Generating kinetic data for use in design and evaluation of high temperature processing systems. J Food Sci 55(3):851–853

    Article  Google Scholar 

  • Sapru V, Smerage GH, Teixeira AA, Lindsay JA (1993) Comparison of predictive models for bacterial spore population resources to sterilization temperature. J Food Sci 58(1):223–228

    Article  Google Scholar 

  • Selman JD (1989) The blanching process. In: Thorne S (ed) Developments in food preservation—4. Elsevier Applied Science, London, pp 205–249

    Google Scholar 

  • Shull JJ, Cargo GT, Ernst RR (1963) Kinetics of heat activation and thermal death of microbial spores. Appl Microbiol 11:485–487

    CAS  Google Scholar 

  • Skipnes D, Hendricks M (2008) Novel methods to optimize the nutritional and sensory quality of in-pack processed fish products. In: Richardson P (ed) In-Pack processed foods—improving quality. Woodhead Publishing Ltd., Cambridge, UK, pp 382–402

    Chapter  Google Scholar 

  • Simpson SG, Williams MC (1974) An analysis of high temperature/short time sterilization during laminar flow. J Food Sci 39:1047–1054

    Article  Google Scholar 

  • Srimani B, Stahl R, Loncin M (1990) Death rates of bacterial spores at high temperatures. Lebensm Wiss Technol 13:186–189

    Google Scholar 

  • Steinfeld JI, Fransisco JS (1989) Chemical kinetics and dynamics. Prentice Hall, New York

    Google Scholar 

  • Stevens B (1961) Chemical kinetics. Chapman & Hall, London

    Google Scholar 

  • Stringer SC, Peck MW (2008) Foodborne clostridia and the safety of in-pack preserved foods. In: Richardson P (ed) In-Pack processed foods—improving quality. Woodhead Publishing Ltd., Cambridge, UK, pp 251–276

    Chapter  Google Scholar 

  • Stumbo CR (1948) A technique for studying resistance of bacterial spores to temperatures in the higher range. Food Technol 2:228–240

    Google Scholar 

  • Stumbo CR, Murphy JR, Cochran J (1950) Nature of thermal death time curves for P.A. 3679 and Clostridium botulinum. Food Technol 4:321–326

    Google Scholar 

  • Stumbo CR (1973) Thermobacteriology in food processing, 2nd edn. Academic, New York

    Google Scholar 

  • Swartzel KR (1982) Arrhenius kinetics applied to product constituent losses in ultrahigh temperature processing. J Food Sci 47:1886–1891

    Article  Google Scholar 

  • Swartzel KR (1984) A continuous flow procedure for kinetic data generation. J Food Sci 49:803–806

    Article  Google Scholar 

  • Swartzel KR (1989) Non-isothermal kinetic data generation for food constituents. In: Singh RP, Medina AG (eds) Food properties and computer-aided engineering of food processing systems. Kluwer Academic Publishers, Dordrecht, pp 99–103

    Chapter  Google Scholar 

  • Swartzel KR, Jones VA (1985) System design and calibration of continuous flow apparatus for kinetic studies. J Food Sci 50:1203–1204, 1207

    Article  Google Scholar 

  • Swartzel KR (1986) Equivalent-point method of thermal evaluation of continuous flow systems. J Agric Food Chem 34:396–401

    Article  CAS  Google Scholar 

  • Teixeira AA (2002) Origins of the 12-D process. In: Tucker GS (ed) Second international symposium on thermal processing—thermal processing: validation challenges (Session 1:2). Campden BRI, Chipping Campden, Glos, UK

    Google Scholar 

  • Teixeira AA (2004) Dynamic methods for estimating thermal resistance parameters. In: Tucker GS (ed) Third international symposium on thermal processing—process and package innovation for convenience foods (Session 3.4). Campden BRI, Chipping Campden, UK

    Google Scholar 

  • Teixeira AA (2006) Simulating thermal processes using deterministic models. In: Sun D-W (ed) Thermal food processing. CRC Press, Boca Raton, FL, pp 73–106

    Google Scholar 

  • Teixeira AA (2007) Modelling microorganisms in food. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Teixeira A, Rodriguez AC (2009) New kinetic models for inactivation of bacterial spores. In: Simpson R (ed) Engineering aspects of food processing. CRC Press, Boca Raton, FL, pp 231–248

    Google Scholar 

  • Teixeira AA, Sapru V, Smerage GH, Rodriguez AC (1990) Thermal sterilization model with complex reaction kinetics. In: Spiess WEL, Schubert H (eds) Engineering and food, vol 2. Elsevier Applied Science, London, pp 158–166

    Google Scholar 

  • Truhlar DG (1978) Interpretation of the activation energy. J Chem Educ 55(5):310

    Article  Google Scholar 

  • Van Boekel MJAS (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 72:159–172

    Google Scholar 

  • Van Loey A, Fransis A, Hendrickx M, Maesmans G, Tobback P (1995) Kinetics of quality changes in green peas and white beans during thermal processing. J Food Eng 24:361–377

    Article  Google Scholar 

  • Vas K (1970) Problems of thermal processing. J Appl Bacteriol 33:157–166

    Article  CAS  Google Scholar 

  • Villota R, Hawkes JG (1986) Kinetics of nutrients and organoleptic changes in foods during processing. In: Okos MR (ed) Physical and chemical properties of food. American Society of Agricultural Engineers, St Joseph, MI

    Google Scholar 

  • Villota R, Hawkes JG (1992) Reaction kinetics in food systems. In: Heldman DR, Lund DB (eds) Handbook of food engineering. Marcel Dekker, New York

    Google Scholar 

  • Warren DS (1973) A physico-chemical model for the death rate of a micro-organism. J Food Technol 8(3):247–257

    Article  CAS  Google Scholar 

  • Xezones H, Hutchings IJ (1965) Thermal resistance of Clostridium botulinum (62A) as affected by fundamental constituents. Food Technol 19(6):113–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holdsworth, S.D., Simpson, R. (2016). Kinetics of Microbial Death and Factors for Quality Attributes. In: Thermal Processing of Packaged Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24904-9_3

Download citation

Publish with us

Policies and ethics