Skip to main content

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

An overview over the role and past evolution of High Throughput Screening (HTS) in early drug discovery is given and the different screening phases which are sequentially executed to progressively filter out the samples with undesired activities and properties and identify the ones of interest are outlined. The goal of a complete HTS campaign is to identify a validated set of chemical probes from a larger library of small molecules, antibodies, siRNA, etc. which lead to a desired specific modulating effect on a biological target or pathway. The main focus of this chapter is on the description and illustration of practical assay and screening data quality assurance steps and on the diverse statistical data analysis aspects which need to be considered in every screening campaign to ensure best possible data quality and best quality of extracted information in the hit selection process. The most important data processing steps in this respect are the elimination of systematic response errors (pattern detection, categorization and correction), the detailed analysis of the assay response distribution (mixture distribution modeling) in order to limit the number of false negatives and false discoveries (false discovery rate and p-value analysis), as well as selecting appropriate models and efficient estimation methods for concentration-response curve analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham VC, Taylor DL, Haskins JRL (2004) High content screening applied to large-scale cell biology. Trends Biotechnol 22(1):15–22

    Article  Google Scholar 

  • Abraham Y, Zhang X, Parker CN (2014) Multiparametric Analysis of Screening Data: Growing Beyond the Single Dimension to Infinity and Beyond. J Biomol Screen 19(5):628–639

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Google Scholar 

  • Baker M (2010) Academic screening goes high-throughput. Nat Methods 7:787–792. doi:10.1038/nmeth1010-787

    Article  Google Scholar 

  • Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25(4):451–457

    Article  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  Google Scholar 

  • Barry D, Hartigan JA (1993) A Bayesian analysis of change point problems. J Am Stat Assoc 88:309–319

    MATH  MathSciNet  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    MATH  MathSciNet  Google Scholar 

  • Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009) Statistical methods for analysis of high throughput RNA interference screens. Nat Methods 6(8):569. doi:10.1038/nmeth.1351

    Article  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1:307–310

    Google Scholar 

  • Boutros M, Bras LP, Huber W (2006) Analysis of cell-based RNAi screens. Genome Biol 7:R66. doi:10.1186/gb-2006-7-7-r66

    Article  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimeers: an introduction to design, data analysis and model building. Wiley, New York. ISBN:0-471-09315-7

    Google Scholar 

  • Bray MA, Carpenter AE (2012) Advanced assay development guidelines for image-based high content screening and analysis. In: Sittampalam GS (ed) Assay guidance manual. http://www.ncbi.nlm.nih.gov/books/NBK53196/. Accessed 15 Oct 2014

  • Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8(6):634–647

    Article  Google Scholar 

  • Brummelkamp TR, Fabius AWM, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM, Bernards R, Beijersbergen RL (2006) An shRNA barcode scrren provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2(4):202–206

    Article  Google Scholar 

  • Bushway PJ, Azimi B, Heynen-Genel S, Price JH, Mercola M (2010) Hybrid median filter background estimator for correcting distortions in microtiter plate data. Assay Drug Dev Technol 8(2):238–250. doi:10.1089/adt.2009.0242

    Article  Google Scholar 

  • Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3(8):461–465. doi:10.1038/nchembio.2007.15

    Article  Google Scholar 

  • Coma I, Clark L, Diez E, Harper G, Herranz J, Hofmann G, Lennon M, Richmond N, Valmaseda M, Macarron R (2009a) Process validation and screen reproducibility in high-throughput screening. J Biomol Screen 14:66–76

    Article  Google Scholar 

  • Coma I, Herranz, J, Martin J (2009) Statistics and decision making in high-throughput screening. In: William P, Janzen WP, Bernasconi P (eds) High-throughput screening. Methods in molecular biology, vol 565. Humana, Totowa. ISBN:978-1-60327-257-5

    Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31:377–403

    Article  MATH  MathSciNet  Google Scholar 

  • Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4(4):210

    Article  Google Scholar 

  • Cui X, Hwang JTG, Qiu J, Blades NJ, Churchill GA (2005) Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6(1): 59–75

    Article  MATH  Google Scholar 

  • Dalmasso C, Broet P, Moreau T (2005) A simple procedure for estimating the false discovery rate. Bioinformatics 21(5):660–668. doi:10.1093/bioinformatics/bti063

    Article  Google Scholar 

  • Davies JW, Glick M, Jenkins JL (2006) Streamlining lead discovery buy aligning in silico and high-thtoughput screening. Curr Op Chem Bio 10:343–351

    Article  Google Scholar 

  • Dean A, Lewis S (eds) (2006) Screening: methods for experimentation in industry, drug discovery, and genetics. Springer, New York. ISBN 978-1-4419-2098-0

    Google Scholar 

  • R Development Core Team (2013) R: a language and en­vironment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.Rproject.org. ISBN:3­900051­07­0

    Google Scholar 

  • Dragiev P, Nadon R, Makarenkov V (2011) Systematic error detection in experimental high-throughput screening. BMC Bioinformatics 12:25

    Article  Google Scholar 

  • Duerr O, Duval F, Nichols A, Lang P, Brodte A, Heyse S, Besson D (2007) Robust Hit identification by quality assurance and multivariate data analysis of a high content, cell based assay. J Biomol Screen 12(8):1042–1049

    Article  Google Scholar 

  • Eastwood BJ, Chesterfield AK, Wolff MC, Felder CC (2005) Methods for the design and analysis of replicate-experiment studies to establish assay reproducibility and the equivalence of two potency assays. In: Gad S (ed) Drug discovery handbook. Wiley, New York

    Google Scholar 

  • Eastwood BJ, Farmen MW, Iversen PW, Craft TJ, Smallwood JK, Garbison KE, Delapp NW, Smith GF (2006) The minimum significant ratio: a statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. J Biomol Screen 3:253–261

    Article  Google Scholar 

  • Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells – a user’s guide. Nat Rev Genet 7:373–384

    Article  Google Scholar 

  • Efron B (2004) Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J Am Stat Assoc 99(465):96–104

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B (2010) Large-scale inference. Cambridge University Press, Cambridge. ISBN 978-0-521-19249-1

    Google Scholar 

  • Efron B, Tibshirani R, Storey J, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96:1151–1160

    Article  MATH  MathSciNet  Google Scholar 

  • Formenko I, Durst M, Balaban D (2006) Robust regression for high-throughput screening. Comput Methods Prog Biomed 82:31–37

    Article  Google Scholar 

  • Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M (2006) High-throughput screening: update on practices and success. J Biomol Screen 11(7):864–869

    Google Scholar 

  • Fox SJ (ed) (2002) High throughput screening 2002: new strategies and technologies. High Tech Business Decisions, Moraga

    Google Scholar 

  • Frommolt P, Thomas RK (2008) Standardized high-throughput evaluation of cell-based compound screens. BMC Bioinformatics 9:475

    Article  Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):15–145. doi:10.2307/2986645

    Google Scholar 

  • Goedken ER, Devanarayan V, Harris CM, Dowding LA, Jakway JP, Voss JW, Wishart N, Jordan DC, Talanian RV (2012) Minimum significant ratio of selectivity ratios (MSRSR) and confidence in ratio of selectivity ratios (CRSR): quantitative measures for selectivity ratios obtained by screening assays. J Biomol Screen 17(7):857–867. doi:10.1177/1087057112447108

    Article  Google Scholar 

  • Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648. doi:10.1111/j.1472-8206.2008.00633.x

    Google Scholar 

  • Gubler H (2006) Methods for statistical analysis, quality assurance and management of primary high-throughput screening data. In: Hüser J (ed) High-throughput screening in drug discovery. Methods and principles in medicinal chemistry, vol 35. Wiley-VCH GmbH, Weinheim, pp 151–205. doi:10.1002/9783527609321.ch7

    Chapter  Google Scholar 

  • Gubler H, Schopfer U, Jacoby E (2013) Theoretical and experimental relationships between percent inhibition and IC50 data observed in high-throughput screening. J Biomol Screen 18(1):1–13. doi:10.1177/1087057112455219

    Article  Google Scholar 

  • Gunter B, Brideau C, Pikounis B, Liaw A (2003) Statistical and graphical methods for quality control determination of high-throughput screening data. J Biomol Screen 8(6):624–633

    Article  Google Scholar 

  • Haney SA (2014) Rapid assessment and visualization of normality in high-content and other cell-level data and its impact on the interpretation of experimental results. J Biomol Screen 19(5):672–684

    Article  Google Scholar 

  • Heuer C, Haenel T, Prause B (2002) A novel approach for quality control and correction of HTS based on artificial intelligence. Pharmaceutical Discovery and Development 2002/03, PharmaVentures Ltd., Oxford

    Google Scholar 

  • Heyse S (2002) Comprehensive analysis of high-throughput screening data. In: Bornhop DJ et al (eds) Proceedings of the SPIE, Biomedical Nanotechnology Architectures and Applications 4626, pp 535–547

    Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii

    Google Scholar 

  • Hill AA, LaPan P, Li Y, Haney SA (2007) Analysis of multiparametric HCS data. In: Haney SA (ed) High content screening: science, techniques and applications. Wiley, New York. doi:10.1002/9780470229866.ch15

    Google Scholar 

  • Hinkley DV (1970) Inference about the change-point in a sequence of random variables. Biometrika 57(1):1–17

    Google Scholar 

  • Hoaglin DC, Mosteller F, Tukey JW (1983) Understanding robust and exploratory data analysis. Wiley, New York. ISBN 0-471-09777-2

    MATH  Google Scholar 

  • Horvath L (1993) The maximum likelihood method for testing changes in the paramaters of normal observations. Ann Stat 21(2):671–680

    Article  MATH  Google Scholar 

  • Huang S, Pang L (2012) Comparing statistical methods for quantifying drug sensitivity based on in vitro dose–response assays. Assay Drug Dev Technol 10(1):88–96. doi:10.1089/adt.2011.0388

    Article  Google Scholar 

  • Hubert M, Rousseuw PJ, Vanden Branden K (2005) ROBPCA: a new approach to robust principal component analysis. Technometrics 47:64–79

    Article  MathSciNet  Google Scholar 

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  Google Scholar 

  • Hughes M, Inglese J, Kurtz A, Andalibi A, Patton L, Austin C, Baltezor M, Beckloff M, Sittampalam S, Weingarten M, Weir S (2012) Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies. In: Sittampalam S et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda. http://www.ncbi.nlm.nih.gov/books/NBK92015/

  • Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York. ISBN 978-0471405405

    Book  Google Scholar 

  • Ilouga PE, Hesterkamp T (2012) On the prediction of statistical parameters in high-throughput screening using resampling techniques. J Biomol Screen 17(6):705–712. doi:10.1177/1087057112441623

    Article  Google Scholar 

  • Iversen PW, Eastwood BJ, Sittampalam GS (2006) A comparison of assay performance measures in screening assays: signal window. Z′-factor and assay variability ratio. J Biomol Screen 11(3):247–252

    Article  Google Scholar 

  • Kaiser J (2008) Industrial-style screening meets academic biology. Science 321(5890):764–766. doi:10.1126/science.321.5890.764

    Article  Google Scholar 

  • Kelly C, Rice J (1990) Monotone smoothing with application to dose-response curves and the assessment of synergism. Biometrics 46(4):1071–1085

    Article  Google Scholar 

  • Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2(2):183–201

    Article  MATH  Google Scholar 

  • Kevorkov D, Makarenkov V (2005) Statistical analysis of systematic errors in high-throughput screening. J Biomol Screen 10(6):557–567

    Article  Google Scholar 

  • Killick R, Eckley IA (2014) Changepoint: an R package for changepoint analysis. J Stat Software 58(3):1--19

    Google Scholar 

  • Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc 107(500):1590–1598

    Article  MATH  MathSciNet  Google Scholar 

  • König R, Chiang CY, Tu BP, Yan SF, DeJesus PD, Romero A, Bergauer T, Orth A, Krueger U, Zhou Y, Chanda SK (2007) A probability-based approach for the analysis large scale RNAi screens. Nat Methods 4(10):847–849

    Article  Google Scholar 

  • Kramer R, Cohen D (2004) Functional genomics to new drug targets. Nat Rev Drug Discov 3(11):965–972

    Article  Google Scholar 

  • Kümmel A, Selzer P, Siebert D, Schmidt I, Reinhardt J, Götte M, Ibig-Rehm Y, Parker CN, Gabriel D (2012) Differentiation and visualization of diverse cellular phenotypic responses in primary high-content screening. J Biomol Screen 17(6):843–849. doi:10.1177/1087057112439324

    Article  Google Scholar 

  • Loo LH, Wu LF, Altschuler SJ (2007) Image-based multivariate profiling of drug responses from single cells. Nat Methods 4(5):445. doi:10.1038/NMETH1032

    Google Scholar 

  • Macarron R, Hertzberg RP (2011) Design and implementation of high-throughput screening assays. Mol Biotechnol 47(3):270–285. doi:10.1007/s12033-010-9335-9

    Article  Google Scholar 

  • Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DVS, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195. doi:10.1038/nrd3368

    Article  Google Scholar 

  • Majumdar A, Stock D (2011) Large sample inference for an assay quality measure used in high-throughput screening. Pharm Stat 1:227–231

    Article  Google Scholar 

  • Makarenkov V, Zentilli P, Kevorkov D, Gagarin A, Malo N, Nadon R (2007) An efficient method for the detection and elimination of systematic error in high-throughput screening. Bioinformatics 23:1648–1657

    Article  Google Scholar 

  • Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24:167–175

    Article  Google Scholar 

  • Mangat CS, Bharat A, Gehrke SS, Brown ED (2014) Rank ordering plate data facilitates data visualization and normalization in high-throughput screening. Biomol Screen 19(9): 1314–1320. doi:10.1177/1087057114534298

    Article  Google Scholar 

  • Matson RS (2004) Applying genomic and proteomic microarray technology in drug discovery. CRC, Boca Raton. ISBN 978-0849314698

    Book  Google Scholar 

  • Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9(5):580–588

    Article  Google Scholar 

  • Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448

    Article  Google Scholar 

  • McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS, Roederer M, Gottardo R (2013) Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29(4):461–467. doi:10.1093/bioinformatics/bts714

    Article  Google Scholar 

  • Millard BL, Niepel M, Menden MP, Muhlich JL, Sorger PK (2011) Adaptive informatics for multifactorial and high-content biological data. Nat Methods 8(6):487

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1):17–23. doi:10.2307/2332142

    Article  MATH  MathSciNet  Google Scholar 

  • Mosteller F, Tukey J (1977) Data analysis and regression. Addison-Wesley, Reading. ISBN 0-201-04854-X

    Google Scholar 

  • Mulrooney CA, Lahr DL, Quintin MJ, Youngsaye W, Moccia D, Asiedu JK, Mulligan EL, Akella LB, Marcaurelle LA, Montgomery P, Bittker JA, Clemons PA, Brudz S, Dandapani S, Duvall JR, Tolliday NJ, De Souza A (2013) An informatic pipeline for managing high-throughput screening experiments and analyzing data from stereochemically diverse libraries. J Comput Aided Mol Des 27(5):455–468. doi:10.1007/s10822-013-9641-y

    Google Scholar 

  • Murie C, Woody O, Lee AY, Nadon R (2009) Comparison of small n statistical tests of differential expression applied to microarrays. BMC Bioinformatics 10:45. doi:10.1186/1471-2105-10-45

    Article  Google Scholar 

  • Murie C, Barette C, Lafanechere L, Nadon R (2013) Single assay-wide variance experimental (SAVE) design for high-throughput screening. Bioinformatics 29(23):3067–3072. doi:10.1093/bioinformatics/btt538

    Article  Google Scholar 

  • Murie C, Barette C, Lafanechere L, Nadon R (2014) Control-plate regression (CPR) normalization for high-throughput screens with many active features. J Biomol Screen 19(5):661–671. doi:10.1177/1087057113516003

    Google Scholar 

  • Murray CW, Rees DC (2008) The rise of fragment-based drug discovery. In: Edward Zartler E, Shapiro M (eds) Fragment-based drug discovery: a practical approach. Wiley, Hoboken. ISBN 978-0-470-05813-8

    Google Scholar 

  • Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, Lam LT, Dave S, Yang L, Powell J, Staudt LM (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110

    Article  Google Scholar 

  • Nichols A (2007) High content screening as a screening tool in drug discovery. Methods Mol Biol 356:379–387

    Google Scholar 

  • Normolle DP (1993) An algorithm for robust non-linear analysis of radioimmunoassay and other bioassays. Stat Med 12:2025–2042

    Article  Google Scholar 

  • Oakland J (2002) Statistical process control. Routledge, Milton Park. ISBN 0-7506-5766-9

    Google Scholar 

  • Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61

    Article  Google Scholar 

  • Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306(5699):1194–1198

    Article  Google Scholar 

  • Prummer M (2012) Hypothesis testing in high-throughput screening for drug discovery. J Biomol Screen 17(4):519–529. doi:10.1177/1087057111431278

    Article  Google Scholar 

  • Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs S, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. doi:10.1038/nbt.1991

    Article  Google Scholar 

  • Ravkin I (2004) Quality measures for imaging-based cellular assays. Poster #P12024, Society for Biomolecular Screening. Annual Meeting Abstracts. http://www.ravkin.net/posters/P12024-Quality%20Measures%20for%20Imaging-based%20Cellular%20Assays.pdf. Accessed 15 Oct 2014

  • Reisen F, Zhang X, Gabriel D, Selzer P (2013) Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery. J Biomol Screen 18(10):1284–1297. doi:10.1177/1087057113501390

    Article  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12(5):1–22. http://www.jstatsoft.org/

  • Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM (2006) Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 3(9):71. doi:10.1038/NMETH92

    Article  Google Scholar 

  • Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283. doi:10.2307/2291267

    Article  MATH  MathSciNet  Google Scholar 

  • Sakharkar MK, Sakharkar KR, Pervaiz S (2007) Druggability of human disease genes. Int J Biochem Cell Biol 39:1156–1164

    Article  Google Scholar 

  • Sebaugh JL (2011) Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10:128–134

    Google Scholar 

  • Sharma S, Rao A (2009) RNAi screening – tips and techniques. Nat Immunol 10(8):799–804

    Article  Google Scholar 

  • Shewhart WA (1931) Economic control of quality of manufactured product. Van Nostrand, New York. ISBN 0-87389-076-0

    Google Scholar 

  • Shun TY, Lazo JS, Sharlow ER, Johnston PA (2011) Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review. J Biomol Screen 16(1):1–14. doi:10.1177/1087057110389039

    Article  Google Scholar 

  • Sims D, Mendes-Pereira AM, Frankum J, Burgess D, Cerone MA, Lombardelli C, Mitsopoulos C, Hakas J, Murugaesu N, Isacke CM, Fenwick K, Assiotis I, Kozarewa I, Zvelebil M, Ashworth A, Lord CJ (2011) High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol 12(R104):1–13

    Google Scholar 

  • Singh S, Carpenter AE, Genovesio A (2014) Increasing the content of high-content screening: an overview. J Biomol Screen 19(5):640–650. doi:10.1177/1087057114528537

    Article  Google Scholar 

  • Sittampalam GS, Iversen PW, Boadt JA, Kahl SD, Bright S, Zock JM, Janzen WP, Lister MD (1997) Design of signal windows in high-throughput screening assays for drug discovery. J Biomol Screen 2:159

    Article  Google Scholar 

  • Sittampalam GS, Gal-Edd N, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Lemmon V, Li Z, McGee J, McManus O, Minor L, Napper A, Riss T, Trask OJ, Weidner J (eds) (2004) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda. http://www.ncbi.nlm.nih.gov/books/NBK53196/

  • Smith K, Horvath P (2014) Active learning strategies for phenotypic profiling of high-content screens. J Biomol Screen 19(5):685–695

    Article  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):1–26

    Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64:479–498

    Article  MATH  MathSciNet  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide experiments. Proc Natl Acad Sci 100:9440–9445

    Article  MATH  MathSciNet  Google Scholar 

  • Street JO, Carrol RJ, Ruppert D (1988) A note on computing robust regression estimates via iteratively reweighted least squares. Am Stat 42:152–154

    Google Scholar 

  • Strimmer K (2008a) A unified approach to false discovery rate estimation. BMC Bioinformatics 9:303. doi:10.1186/1471-2105-9-303

    Article  Google Scholar 

  • Strimmer K (2008b) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24(12):1461–1462

    Article  Google Scholar 

  • Sui Y, Wu Z (2007) Alternative statistical parameter for high-throughput screening assay quality assessment. J Biomol Screen 12(2):229–234

    Google Scholar 

  • Sun D, Whitty A, Papadatos J, Newman M, Donnelly J, Bowes S, Josiah S (2005) Adopting a practical statistical approach for evaluating assay agreement in drug discovery. J Biomol Screen 10(5):508–516

    Article  Google Scholar 

  • Sun D, Jung J, Rush TS, Xu Z, Weber MJ, Bobkova E, Northrup A, Kariv I (2010) Efficient identification of novel leads by dynamic focused screening: PDK1 case study. Comb Chem High Throughput Screen 13(1):16–26

    Article  Google Scholar 

  • Taylor PB, Stewart FP, Dunnington DJ, Quinn ST, Schulz CK, Vaidya KS, Kurali E, Lane TR, Xiong WC, Sherrill TP, Snider JS, Terpstra ND, Hertzberg RP (2000) Automated assay optimization with integrated statistics and smart robotics. J Biomol Screen 5(4):213–226

    Article  Google Scholar 

  • Thorne N, Auld DS, Inglese J (2010) Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 14(3):315–324. doi:10.1016/j.cbpa.2010.03.020

    Article  Google Scholar 

  • Tong T, Wang Y (2007) Optimal shrinkage estimation of variances with applications to microarray data analysis. J Am Stat Assoc 102(477):113–122. doi:10.1198/01621450600000126

    Article  MATH  MathSciNet  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98(9):5116–5121

    Google Scholar 

  • van Oostrum J, Calonder C, Rechsteiner D, Ehrat M, Mestan J, Fabbro D, Voshol H (2009) Tracing pathway activities with kinase inhibitors and reverse phase protein arrays. Proteomics Clin Appl 3(4):412–422

    Article  Google Scholar 

  • Varin T, Gubler H, Parker CN, Zhang JH, Raman P, Ertl P, Schuffenhauer A (2010) Compound set enrichment: a novel approach to analysis of primary HTS data. J Chem Inf Model 50(12): 2067–2078. doi:10.1021/ci100203e

    Article  Google Scholar 

  • Wu Z, Liu D, Sui Y (2008) Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings. J Biomol Screen 13(2):159–167. doi:10.1177/1087057107312628

    Article  Google Scholar 

  • Wunderlich ML, Dodge ME, Dhawan RK, Shek WR (2011) Multiplexed fluorometric immunoassay testing methodology and troubleshooting. J Vis Exp 12(58):pii:3715

    Google Scholar 

  • Yin Z, Zhou X, Bakal C, Li F, Sun Y, Perrimon N, Wong ST (2008) Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens. BMC Bioinformatics 9:264. doi:10.1186/1471-2105-9-264

    Article  Google Scholar 

  • Zhang XD (2008) Novel analytic criteria and effective plate designs for quality control in genome-scale RNAi screens. J Biomol Screen 13:363–377

    Article  Google Scholar 

  • Zhang XD (2011a) Optimal high-throughput screening: practical experimental design and data analysis for genome-scale RNAi research. Cambridge University Press, Cambridge. ISBN 978-0-521-73444-8

    Book  Google Scholar 

  • Zhang XD (2011b) Illustration of SSMD, Z Score, SSMD*, Z* score and t statistic for hit selection in RNAi high-throughput screening. J Biomol Sreen 16(7):775–785

    Article  Google Scholar 

  • Zhang XD, Zhang Z (2013) displayHTS: a R package for displaying data and results from high-throughput screening experiments. Bioinformatics 29(6):794–796. doi:10.1093/bioinformatics/btt060

    Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (2000) Confirmation of primary active substances from high throughput screening of chemical and biological populations: a statistical approach and practical considerations. J Comb Chem 2(3):258–265

    Article  Google Scholar 

  • Zhang JH, Wu X, Sills MA (2005) Probing the primary screening efficiency by multiple replicate testing: a quantitative analysis of hit confirmation and false screening results of a biochemical assay. J Biomol Screen 10:695. doi:10.1177/1087057105279149

    Article  Google Scholar 

  • Zhang XD, Ferrer M, Espeseth AS, Marine SD, Stec EM, Crackower MA, Holder DJ, Heyse JF, Strulovici B (2007) The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. J Biomol Screen 12(4):497–509. doi:10.1177/1087057107300646

    Article  Google Scholar 

  • Zhang XD, Kuan PF, Ferrer M, Shu X, Liu YC, Gates AT, Kunapuli P, Stec EM, Xu M, Marine SD, Holder DJ, Strulovici B, Heyse JF, Espeseth AS (2008) Hit selection with false discovery rate control in genome-scale RNAi screens. Nucleic Acids Res 36(14):4667–4679. doi:10.1093/nar/gkn435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanspeter Gubler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gubler, H. (2016). High-Throughput Screening Data Analysis. In: Zhang, L. (eds) Nonclinical Statistics for Pharmaceutical and Biotechnology Industries. Statistics for Biology and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-23558-5_5

Download citation

Publish with us

Policies and ethics