Skip to main content
Log in

Design and Implementation of High Throughput Screening Assays

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

High throughput screening (HTS) is at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful analysis of many variables, starting with the choice of assay target and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to insure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAO:

Automated assay optimization

AAS:

Atomic absorbance spectroscopy

BRET:

Bioluminescence resonance energy transfer

Bicine:

N,N-bis(2-Hydroxyethyl)glycine

B max :

Maximum binding capacity

BSA:

Bovine serum albumin

CHAPS:

3-([3-Cholamidopropyl]dimethylammonio)-1-propanesulfonate

CV:

Coefficient of variation

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

ECL:

Electrochemiluminescence

EDTA:

Ethylenediamine-N,N,N′,N′-tetraacetic acid

EFC:

Enzyme fragment complementation

EGTA:

Ethylene glycol-bis(2-aminoethyl)-N,N,N′,N′-tetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

FCS:

Fluorescence correlation spectroscopy

FIDA:

Fluorescence intensity distribution analysis

FLINT:

Fluorescence intensity

FRET:

Fluorescence resonance energy transfer

FP:

Fluorescence polarization

GPCR:

G-protein coupled receptor

HTS:

High throughput screening

K d :

Dissociation constant

L:

Ligand

M:

Mean

NSB:

Non-specific binding

OD:

Optical density unit

PEI:

Polyethylene imine

PMSF:

Phenylmethylsulfonyl fluoride

RIA:

Radioimmunoassay

S/B:

Signal to background ratio

S/N:

Signal to noise ratio

SD:

Standard deviation

SW:

Signal window

SPA:

Scintillation proximity assay

TAPS:

N-tris(Hydroxymethyl)methyl-3-aminopropanesulfonic acid

TR-FRET:

Time-resolved fluorescence resonance energy transfer

V max :

Maximum velocity

References

  1. Cascieri, M. A., & Springer, M. S. (2000). The chemokine/chemokine-receptor family: Potential and progress for therapeutic intervention. Current Opinion in Chemical Biology, 4, 420–427.

    Article  CAS  Google Scholar 

  2. Miller, W. H., Alberts, D. P., Bhatnagar, P. K., et al. (2000). Discovery of orally active nonpeptide vitronectin receptor antagonists based on a 2-benzazepine Gly-Asp mimetic. Journal of Medicinal Chemistry, 43, 22–26.

    Article  CAS  Google Scholar 

  3. Fox, S. (2007). High throughput screening: New strategies, success rates, and use of enabling technologies. HighTech Business Decisions Market report: http://www.hightechdecisions.com/reports.html

  4. Macarrón, R. (2006). Critical review of the role of HTS in drug discovery. Drug Discovery Today, 11, 277–279.

    Article  Google Scholar 

  5. Gonzalez, J. E., Oades, K., Leychkis, Y., Harootunian, A., & Negulescu, P. A. (1999). Cell-based assays and instrumentation for screening ion-channel targets. Drug Discovery Today, 4, 431–439.

    Article  CAS  Google Scholar 

  6. Schroeder, K. S., & Neagle, B. D. (1996). FLIPR: A new instrument for accurate, high throughput optical screening. Journal of Biomolecular Screening, 1, 75–80.

    Article  CAS  Google Scholar 

  7. Shoichet, B. K. (2006). Screening in a spirit haunted world. Drug Discovery Today, 11, 607–615.

    Article  CAS  Google Scholar 

  8. Inglese, J., Johnson, R. L., Simeonov, A., et al. (2007). High-throughput screening assays for the identification of chemical probes. Nature Chemical Biology, 3, 466–479.

    Article  CAS  Google Scholar 

  9. Eggeling, C., Brand, L., Ullmann, D., & Jäger, S. (2003). Highly sensitive fluorescence detection technology currently available for high throughput screening. Drug Discovery Today, 8, 632–641.

    Article  CAS  Google Scholar 

  10. Pope, A. J., Haupts, U., & Moore, K. J. (1999). Homogeneous fluorescence readouts for miniaturized high-throughput screening; Theory and practice. Drug Discovery Today, 4, 350–362.

    Article  CAS  Google Scholar 

  11. Gaudet, E. A., Huang, K. S., Zhang, Y., Huang, W., Mark, D., & Sportsman, J. R. (2001). A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. Journal of Biomolecular Screen, 8, 164–175.

    Article  Google Scholar 

  12. Wu, S., & Liu, B. (2005). Application of scintillation proximity assay in drug discovery. Biodrugs, 19, 383–392.

    Article  CAS  Google Scholar 

  13. Glickman, J., Wu, X., Mercuri, R., et al. (2002). A Comparison of ALPHAScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. Journal of Biomolecular Screen, 7, 3–10.

    Article  CAS  Google Scholar 

  14. Debad, J. D., Glezer, E. N., Wohlstadter, J. N., & Sigal, G. B. (2004). Clinical and biological applications of ECL. In A. J. Bard (Ed.), Electrogenerated chemiluminescence (pp. 43–78). New York: Marcel Dekker.

    Google Scholar 

  15. Rich, R. L., & Myszka, D. G. (2007). Higher-throughput, label-free, real-time molecular interaction analysis. Analytical Biochemistry, 361, 1–6.

    Article  CAS  Google Scholar 

  16. Gabriel, D., Vernier, M., Pfeifer, M. J., Dasen, B., Tenaillon, L., & Bouhelal, R. (2003). High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Development Technologies, 1, 291–303.

    Article  CAS  Google Scholar 

  17. Zheng, W., Spencer, R., & Kiss, L. (2004). High throughput assay technologies for ion channel drug discovery. Assay Drug Development Technologies, 2, 543–552.

    Article  CAS  Google Scholar 

  18. Terstappen, G. C. (2005). Ion channel screening technologies today. Drug Discovery Today: Technologies, 2, 133–140.

    Article  CAS  Google Scholar 

  19. Hill, S. J., Baker, J. G., & Rees, S. (2001). Reporter-gene systems for the study of G-protein-coupled receptors. Current Opinion Pharmacology, 1, 526–532.

    Article  CAS  Google Scholar 

  20. Fan, F., & Wood, K. V. (2007). Bioluminescent assays for high-throughput screening. Assay Drug Development Technologies, 5, 127–136.

    Article  CAS  Google Scholar 

  21. Poulsen, F., & Jensen, K. B. (2007). A luminescent immunoassay oxygen channeling for the determination of insulin in human plasma. Journal of Biomolecular Screening, 12, 240–247.

    Article  CAS  Google Scholar 

  22. Assay Guidance Manual Version 4.1. Eli Lilly and Company and NIH Chemical Genomics Center, 2005. Accessed December 14, 2007, at http://www.ncgc.nih.gov/guidance/manual_toc.html

  23. Cheng, Y. C., & Prussof, W. (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology, 22, 3099–3108.

    Article  CAS  Google Scholar 

  24. Bush, K. (1983). Screening and characterization of enzyme inhibitors as drug candidates. Drug Metabolism Reviews, 14, 689–708.

    Article  CAS  Google Scholar 

  25. Macarron, R., Mensah, L., Cid, C., et al. (2000). A homogeneous method to measure aminoacyl-tRNA synthetase aminoacylation activity using scintillation proximity assay technology. Analytical Biochemistry, 284, 183–190.

    Article  CAS  Google Scholar 

  26. Tipton, K. F. (1980). Kinetics and enzyme inhibition studies. In M. Sandler (Ed.), Enzyme inhibitors as drugs (pp. 1–23). Baltimore: University Park Press.

    Google Scholar 

  27. Burt, D. (1986). Receptor binding methodology and analysis. In R. A. O’Brien (Ed.), Receptor binding in drug research (pp. 4–29). New York: Decker.

    Google Scholar 

  28. Gupta, S., Indelicato, S., Jethwa, V., et al. (2007). Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. Journal of Immunological Methods, 321, 1–18.

    Article  CAS  Google Scholar 

  29. Kost, T. A., Condreay, J. P., Ames, R. S., Rees, S., & Romanos, M. A. (2007). Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discovery Today, 12, 396–403.

    Article  CAS  Google Scholar 

  30. Lundholt, B., Scudder, K., & Pagliaro, L. (2003). A simple technique for reducing edge effect in cell-based assays. Journal of Biomolecular Screening, 8, 566–570.

    Article  CAS  Google Scholar 

  31. Lutz, M. W., Menius, J. A., Choi, T. D., et al. (1996). Experimental design for high-throughput screening. Drug Discovery Today, 1, 277–286.

    Article  CAS  Google Scholar 

  32. Taylor, P., Stewart, F., Dunnington, D. J., et al. (2000). Automated assay optimization with integrated statistics and smart robotics. Journal of Biomolecular Screening, 5, 213–225.

    Article  CAS  Google Scholar 

  33. Zhang, J. H., Chung, T. D. Y., & Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening, 4, 67–73.

    Article  Google Scholar 

  34. Iversen, P. W., Eastwood, B. J., Sittampalam, G. S., & Cox, K. L. (2006). A comparison of assay performance measures in screening assays: signal window, Z′ factor, and assay variability ratio. Journal of Biomolecular Screening, 11, 247–252.

    Article  CAS  Google Scholar 

  35. Coma, I., Herranz, J., & Martin, J. (2009). Statistics and decision making in high-throughput screening. Methods in Molecular Biology, 565, 69–106.

    Article  CAS  Google Scholar 

  36. Barnett, V. (1974). Elements of sampling theory (pp. 42–46). London: The English Universities Press.

    Google Scholar 

  37. Coma, I., Clark, L., Diez, E., et al. (2009). Process validation and screen reproducibility in high-throughput screening. Journal of Biomolecular Screening, 14, 66–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the many colleagues at GlaxoSmithKline that helped over the years to shape the screening process and to build the collective knowledge succinctly described in this introduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Macarrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macarrón, R., Hertzberg, R.P. Design and Implementation of High Throughput Screening Assays. Mol Biotechnol 47, 270–285 (2011). https://doi.org/10.1007/s12033-010-9335-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9335-9

Keywords

Navigation