Skip to main content

Biopreservation of Seafood by Using Bacteriocins and Bacteriocinogenic Lactic Acid Bacteria as Potential Bio-control Agents

  • Chapter
Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas

Part of the book series: Microbiology Monographs ((MICROMONO,volume 29))

Abstract

This chapter reviews the use of bacteriocins and bacteriocinogenic lactic acid bacteria (LAB) as biopreservative in seafood and seafood products. The application is to control the growth of spoilage bacteria and/or to inhibit the growth of pathogenic bacteria in order to extend shelf life and to enhance the product safety. The genera of LAB, classification of bacteriocins, mode of action of bacteriocin, food-borne pathogenic, and spoilage bacteria in seafood are addressed. Several applications of LAB and their bacteriocin for biopreservation of seafood and seafood products are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185

    Article  CAS  PubMed  Google Scholar 

  • Albano H, Pinho C, Leite D, Barbosa J, Silva J, Carneiro L, Magalhães R, Hogg T, Teixeira P (2009) Evaluation of a bacteriocin-producing strain of Pediococcus acidilactici as a biopreservative for “Alheira”, a fermented meat sausage. Food Control 20:764–770. doi:10.1016/j.foodcont.2008.09.021

    Article  CAS  Google Scholar 

  • Alves VF, Martinez RCR, Lavrador MAS, De Martinis ECP (2006) Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Sci 74:623–627. doi:10.1016/j.meatsci.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  • Amagliani G, Brandi G, Schiavano GF (2012) Incidence and role of Salmonella in seafood safety. Food Res Int 45:780–788. doi:10.1016/j.foodres.2011.06.022

    Article  Google Scholar 

  • Anacarso I, Messi P, Condò C, Iseppi R, Bondi M, Sabia C, de Niederhäusern S (2014) A bacteriocin-like substance produced from Lactobacillus pentosus 39 is a natural antagonist for the control of Aeromonas hydrophila and Listeria monocytogenes in fresh salmon fillets. LWT Food Sci Technol 55:604–611. doi:10.1016/j.lwt.2013.10.012

    Article  CAS  Google Scholar 

  • Angiolillo L, Conte A, Zambrini AV, Del Nobile MA (2014) Biopreservation of Fior di Latte cheese. J Dairy Sci 97:5345–5355. doi:10.3168/jds.2014-8022

    Article  CAS  PubMed  Google Scholar 

  • Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, Spain, pp 475–486

    Google Scholar 

  • Archer GL (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181

    Article  CAS  PubMed  Google Scholar 

  • Ayulo AM, Machado RA, Scussel VM (1994) Enterotoxigenic Escherichia coli and Staphylococcus aureus in fish and seafood from the southern region of Brazil. Int J Food Microbiol 24:171–178

    Article  CAS  PubMed  Google Scholar 

  • Azhari Ali A (2010) Beneficial role of lactic acid bacteria in food preservation and human health: a review. Res J Microbiol 5:1213–1221. doi:10.3923/jm.2010.1213.1221

    Article  Google Scholar 

  • Ben Embarek PK, Jeppesen VF, Huss HH (1994) Antibacterial potential of Enterococcus faecium strains isolated from sous-vide cooked fish fillets. Food Microbiol 11:525–536. doi:10.1006/fmic.1994.1060

    Article  Google Scholar 

  • Biscola V, Todorov SD, Capuano VSC, Abriouel H, Gálvez A, Franco BDGM (2013) Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Sci 93:607–613. doi:10.1016/j.meatsci.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  • Björkroth J, Holzapfel W (2006) Genera Leuconostoc, Oenococcus and Weissella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 267–319

    Chapter  Google Scholar 

  • Board ADAME (2011) Listeriosis [WWW Document]. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002356/. Accessed 11.8.13

  • Bott TL, Deffner JS, McCoy E, Foster EM (1966) Clostridium botulinum type E in fish from the Great Lakes. J Bacteriol 91:919–924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bulut C, Gunes H, Okuklu B, Harsa S, Kilic S, Coban HS, Yenidunya AF (2005) Homofermentative lactic acid bacteria of a traditional cheese, Comlek peyniri from Cappadocia region. J Dairy Res 72:19–24

    Article  CAS  PubMed  Google Scholar 

  • Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J (2007) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol 1:43–63. doi:10.1007/s11947-007-0021-2

    Article  Google Scholar 

  • Castellano P, Belfiore C, Fadda S, Vignolo G (2008) A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci 79:483–499. doi:10.1016/j.meatsci.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  • Castro MP, Palavecino NZ, Herman C, Garro OA, Campos CA (2011) Lactic acid bacteria isolated from artisanal dry sausages: characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Sci 87:321–329. doi:10.1016/j.meatsci.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  • Chahad OB, El Bour M, Calo-Mata P, Boudabous A, Barros-Velàzquez J (2012) Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Res Microbiol 163:44–54. doi:10.1016/j.resmic.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100. doi:10.1111/j.1541-4337.2003.tb00016.x

    CAS  Google Scholar 

  • Christiansen LN, Deffner J, Foster EM, Sugiyama H (1968) Survival and outgrowth of Clostridium botulinum type E spores in smoked fish. Appl Microbiol 16:133–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C et al (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305. doi:10.1106/R8DE-P6HU-CLXP-5RYT

    Article  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  • Cockey RR, Tatro MC (1974) Survival studies with spores of Clostridium botulinum Type E in pasteurized meat of the blue crab Callinectes sapidus. Appl Microbiol 27:629–633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costantini A, García-Moruno E, Moreno-Arribas MV (2009) Biochemical transformations produced by malolactic fermentation. In: Moreno-Arribas MV, Polo MC (eds) Wine chemistry and biochemistry. Springer, New York, pp 27–57

    Chapter  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi:10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2012) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. doi:10.1038/nrmicro2937

    Article  PubMed  CAS  Google Scholar 

  • Cruz R, Cunha SC, Casal S (2015) Brominated flame retardants and seafood safety: a review. Environ Int 77:116–131. doi:10.1016/j.envint.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  • Cuozzo SA, Sesma FJM, Holgado AAP de R, Raya RR (2001) Methods for the detection and concentration of bacteriocins produced by lactic acid bacteria. In: Spencer JFT, Spencer AL de R (eds) Food microbiology protocols. Humana, Totowa, NJ, pp 141–146

    Google Scholar 

  • Damiani P, Gobbetti M, Cossignani L, Corsetti A, Simonetti MS, Rossi J (1996) The sourdough microflora. Characterization of hetero- and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of the volatile compounds produced. LWT Food Sci Technol 29:63–70. doi:10.1006/fstl.1996.0009

    Article  CAS  Google Scholar 

  • Das S, Lalitha KV, Thampuran N, Surendran PK (2013) Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India. Ann Microbiol 63:1093–1098. doi:10.1007/s13213-012-0566-9

    Article  CAS  Google Scholar 

  • Davis CR, Wibowo DJ, Lee TH, Fleet GH (1986) Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl Environ Microbiol 51:539–545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071. doi:10.1016/j.idairyj.2005.10.026

    Article  CAS  Google Scholar 

  • Diop MB, Dubois-Dauphin R, Destain J, Tine E, Thonart P (2009) Use of a nisin-producing starter culture of Lactococcus lactis subsp, lactis to improve traditional fish fermentation in Senegal. J Food Prot 72:1930–1934

    PubMed  Google Scholar 

  • Einarsson H, Lauzon HL (1995) Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Appl Environ Microbiol 61:669–676

    PubMed Central  CAS  PubMed  Google Scholar 

  • Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630

    Article  PubMed Central  PubMed  Google Scholar 

  • Fall PA, Pilet MF, Leduc F, Cardinal M, Duflos G, Guérin C, Joffraud J-J, Leroi F (2012) Sensory and physicochemical evolution of tropical cooked peeled shrimp inoculated by Brochothrix thermosphacta and Lactococcus piscium CNCM I-4031 during storage at 8°C. Int J Food Microbiol 152:82–90. doi:10.1016/j.ijfoodmicro.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  • Feldhusen F (2000) The role of seafood in bacterial foodborne diseases. Microbes Infect 2:1651–1660

    Article  CAS  PubMed  Google Scholar 

  • Figueroa Ochoa IM, Verdugo Rodríguez A (2005) Molecular mechanism for pathogenicity of Salmonella sp. Rev Latinoam Microbiol 47:25–42

    PubMed  Google Scholar 

  • Fletcher GC, Summers G, Youssef JF, Lu G (2008) Very low prevalence of Clostridium botulinum in New Zealand marine sediments. A report prepared for New Zealand food safety authority Auckland, New Zealand, pp 1–28

    Google Scholar 

  • Françoise L (2010) Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol 27:698–709. doi:10.1016/j.fm.2010.05.016

    Article  PubMed  CAS  Google Scholar 

  • Franzetti L, Scarpellini M, Mora D, Galli A (2003) Carnobacterium spp. in seafood packaged in modified atmosphere. Ann Microbiol 53:189–198

    Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70. doi:10.1016/j.ijfoodmicro.2007.06.001

    Article  PubMed  CAS  Google Scholar 

  • Galvez A, Lopez RL, Abriouel H, Valdivia E, Omar NB (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152. doi:10.1080/07388550802107202

    Article  CAS  PubMed  Google Scholar 

  • Gambarin P, Magnabosco C, Losio MN, Pavoni E, Gattuso A, Arcangeli G, Favretti M (2012) Listeria monocytogenes in ready-to-eat seafood and potential hazards for the consumers. Int J Microbiol. doi:10.1155/2012/497635

    PubMed Central  PubMed  Google Scholar 

  • Garnier M, Matamoros S, Chevret D, Pilet M-F, Leroi F, Tresse O (2010) Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Appl Environ Microbiol 76:8011–8018. doi:10.1128/AEM.01331-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garren DM, Harrison MA, Huang Y-W (1994) Clostridium botulinum type E outgrowth and toxin production in vacuum-skin packaged shrimp. Food Microbiol 11:467–472. doi:10.1006/fmic.1994.1052

    Article  Google Scholar 

  • Ghanbari M, Jami M, Domig KJ, Kneifel W (2013) Seafood biopreservation by lactic acid bacteria—a review. LWT Food Sci Technol 54:315–324. doi:10.1016/j.lwt.2013.05.039

    Article  CAS  Google Scholar 

  • González D, Vitas AI, Díez-Leturia M, García-Jalón I (2013) Listeria monocytogenes and ready-to-eat seafood in Spain: study of prevalence and temperatures at retail. Food Microbiol 36:374–378. doi:10.1016/j.fm.2013.06.023

    Article  PubMed  Google Scholar 

  • Gonzalez-Rey C, Svenson SB, Eriksson LM, Ciznar I, Krovacek K (2003) Unexpected finding of the “tropical” bacterial pathogen Plesiomonas shigelloides from lake water north of the Polar Circle. Polar Biol 26:495–499. doi:10.1007/s00300-003-0521-0

    Article  Google Scholar 

  • Gram L (2010) Microbiological spoilage of fish and seafood products. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of foods and beverages, Food microbiology and food safety. Springer, New York, pp 87–119

    Google Scholar 

  • Gram L, Dalgaard P (2002) Fish spoilage bacteria—problems and solutions. Curr Opin Biotechnol 13:262–266

    Article  CAS  PubMed  Google Scholar 

  • Haakensen M, Dobson CM, Hill JE, Ziola B (2009) Reclassification of Pediococcus dextrinicus (Coster and White 1964) back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 59:615–621. doi:10.1099/ijs.0.65779-0

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA, Garren DM, Huang YW, Gates KW (1996) Risk of Clostridium botulinum type E toxin production in blue crab meat packaged in four commercial-type containers. J Food Prot 59:257–260

    CAS  PubMed  Google Scholar 

  • Hayes SJ (1966) Occurrence of Clostridium botulinum type E in shellfish, lake fish and aquatic sediments in the Northwest

    Google Scholar 

  • Heinitz ML, Ruble RD, Wagner DE, Tatini SR (2000) Incidence of Salmonella in fish and seafood. J Food Prot 63:579–592

    CAS  PubMed  Google Scholar 

  • Hernández P, Rodríguez de García R (1997) Prevalence of Plesiomonas shigelloides in surface water. Arch Latinoam Nutr 47:47–49

    PubMed  Google Scholar 

  • Hielm S, Hyytiä E, Ridell J, Korkeala H (1996) Detection of Clostridium botulinum in fish and environmental samples using polymerase chain reaction. Int J Food Microbiol 31:357–365

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362

    Article  CAS  PubMed  Google Scholar 

  • Huss HH (1980) Distribution of Clostridium botulinum. Appl Environ Microbiol 39:764–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huss HH (1994) Assurance of seafood quality. Food & Agriculture Organization, Rome

    Google Scholar 

  • Huss HH, Jørgensen LV, Vogel BF (2000) Control options for Listeria monocytogenes in seafoods. Int J Food Microbiol 62:267–274

    Article  CAS  PubMed  Google Scholar 

  • Hwanhlem N, Biscola V, El-Ghaish S, Jaffrès E, Dousset X, Haertlé T, H-Kittikun A, Chobert J-M (2013) Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential biocontrol agents: Purification and characterization of bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics Antimicrob Proteins 5:264–278. doi:10.1007/s12602-013-9150-2

    Article  CAS  Google Scholar 

  • Hwanhlem N, Jaffrès E, Dousset X, Pillot G, Choiset Y, Haertlé T, H-Kittikun A, Chobert J-M (2015) Application of a nisin Z-producing Lactococcus lactis subsp. lactis KT2W2L isolated from brackish water for biopreservation in cooked, peeled and ionized tropical shrimps during storage at 8 °C under modified atmosphere packaging. Eur Food Res Technol 240:1259–1269. doi:10.1007/s00217-015-2428-8

    Article  CAS  Google Scholar 

  • Illanchezian S, Jayaraman S, Manoharan MS, Valsalam S (2010) Virulence and cytotoxicity of seafood borne Aeromonas hydrophila. Braz J Microbiol 41:978–983. doi:10.1590/S1517-83822010000400016

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaffrès E, Sohier D, Leroi F, Pilet MF, Prévost H, Joffraud J-J, Dousset X (2009) Study of the bacterial ecosystem in tropical cooked and peeled shrimps using a polyphasic approach. Int J Food Microbiol 131:20–29. doi:10.1016/j.ijfoodmicro.2008.05.017

    Article  PubMed  CAS  Google Scholar 

  • Jaffrès E, Prévost H, Rossero A, Joffraud J-J, Dousset X (2010) Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 60:2159–2164. doi:10.1099/ijs.0.012872-0

    Article  PubMed  CAS  Google Scholar 

  • Jaffrès E, Lalanne V, Macé S, Cornet J, Cardinal M, Sérot T, Dousset X, Joffraud J-J (2011) Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME-GC-MS analysis. Int J Food Microbiol 147:195–202. doi:10.1016/j.ijfoodmicro.2011.04.008

    Article  PubMed  CAS  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology. Springer, New York

    Google Scholar 

  • Kain KC, Kelly MT (1989) Clinical features, epidemiology, and treatment of Plesiomonas shigelloides diarrhea. J Clin Microbiol 27:998–1001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  CAS  PubMed  Google Scholar 

  • Karthik R, Jaffar Hussain A, Muthezhilan R (2014) Effectiveness of Lactobacillus sp (AMET1506) as probiotic against Vibriosis in Penaeus monodon and Litopenaeus vannamei shrimp aquaculture. Biosci Biotech Res Asia 11(Spl. Edn. 1):297–305

    Article  Google Scholar 

  • Kautter DA, Lilly T, LeBlanc AJ, Lynt RK (1974) Incidence of Clostridium botulinum in Crabmeat from the Blue Crab. Appl Microbiol 28:722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khouadja S, Suffredini E, Spagnoletti M, Croci L, Colombo MM, Amina B (2013) Presence of pathogenic Vibrio parahaemolyticus in waters and seafood from the Tunisian Sea. World J Microbiol Biotechnol 29:1341–1348. doi:10.1007/s11274-013-1297-1

    Article  PubMed  Google Scholar 

  • Küley E, Özogul F, Balikçi E, Durmus M, Ayas D (2013) The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria. Braz J Microbiol 44:407–415. doi:10.1590/S1517-83822013000200010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar HS, Parvathi A, Karunasagar I, Karunasagar I (2005) Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World J Microbiol Biotechnol 21:619–623. doi:10.1007/s11274-004-3555-8

    Article  CAS  Google Scholar 

  • Kumar R, Surendran PK, Thampuran N (2008) An eight-hour PCR-based technique for detection of Salmonella serovars in seafood. World J Microbiol Biotechnol 24:627–631. doi:10.1007/s11274-007-9513-5

    Article  CAS  Google Scholar 

  • Kvenberg JE (1991) Nonindigenous bacterial pathogens. In: Ward DR, Hackney C (eds) Microbiology of marine food products. Springer, New York, pp 267–284

    Chapter  Google Scholar 

  • Lalitha KV, Gopakumar K (2001) Growth and toxin production by Clostridium botulinum in fish (Mugil cephalus) and shrimp (Penaeus indicus) tissue homogenates stored under vacuum. Food Microbiol 18:651–657

    Article  CAS  Google Scholar 

  • Leisner JJ, Laursen BG, Prevost H, Drider D, Dalgaard P (2007) Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 31:592–613. doi:10.1111/j.1574-6976.2007.00080.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroi F (2011) Biopreservation of lightly preserved seafood products. INFOFISH Int 4:41–46

    Google Scholar 

  • Ljungh Å, Wadström T (2009) Lactobacillus molecular biology: from genomics to probiotics. Caister Academic, Norfolk, UK

    Google Scholar 

  • Lucas R, Grande MAJ, Abriouel H, Maqueda M, Ben Omar N, Valdivia E, Martínez-Cañamero M, Gálvez A (2006) Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem Toxicol 44:1774–1781. doi:10.1016/j.fct.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee J-H, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616. doi:10.1073/pnas.0607117103

    Article  PubMed Central  PubMed  Google Scholar 

  • Mamlouk K, Macé S, Guilbaud M, Jaffrès E, Ferchichi M, Prévost H, Pilet M-F, Dousset X (2012) Quantification of viable Brochothrix thermosphacta in cooked shrimp and salmon by real-time PCR. Food Microbiol 30:173–179. doi:10.1016/j.fm.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2011) Isolation and characterization of pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian J Microbiol 51:22–29. doi:10.1007/s12088-011-0070-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matamoros S, Pilet MF, Gigout F, Prévost H, Leroi F (2009) Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol 26:638–644. doi:10.1016/j.fm.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  • Matyar F, Kaya A, Dinçer S (2007) Distribution and antibacterial drug resistance of Aeromonas spp. from fresh and brackish waters in Southern Turkey. Ann Microbiol 57:443–447. doi:10.1007/BF03175087

    Article  CAS  Google Scholar 

  • McDonald LC, McFeeters RF, Daeschel MA, Fleming HP (1987) A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria. Appl Environ Microbiol 53:1382–1384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medina RB, Katz MB, González S (2004) Differentiation of lactic acid bacteria strains by postelectrophoretic detection of esterases. Methods Mol Biol 268:459–463. doi:10.1385/1-59259-766-1:459

    CAS  PubMed  Google Scholar 

  • Michel C, Pelletier C, Boussaha M, Douet D-G, Lautraite A, Tailliez P (2007) Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis. Appl Environ Microbiol 73:2947–2955. doi:10.1128/AEM.01852-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miya S, Takahashi H, Ishikawa T, Fujii T, Kimura B (2010) Risk of Listeria monocytogenes contamination of raw ready-to-eat seafood products available at retail outlets in Japan. Appl Environ Microbiol 76:3383–3386. doi:10.1128/AEM.01456-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizan MFR, Jahid IK, Ha S-D (2015) Microbial biofilms in seafood: a food-hygiene challenge. Food Microbiol 49:41–55. doi:10.1016/j.fm.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  • Moll GN, Konings WN, Driessen AJ (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185–198

    Article  CAS  PubMed  Google Scholar 

  • Mossad SB (2000) The world’s first case of Serratia liquefaciens intravascular catheter-related suppurative thrombophlebitis and native valve endocarditis. Clin Microbiol Infect 6:559–560. doi:10.1046/j.1469-0691.2000.00164.x

    Article  CAS  PubMed  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson L, Henrik Huss H, Gram L (1997) Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere. Int J Food Microbiol 38:217–227. doi:10.1016/S0168-1605(97)00111-6

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Gram L, Huss HH, Nilsson L, Gram L, Huss HH (1999) Growth control of Listeria monocytogenes on cold-smoked salmon using a competitive lactic acid bacteria flora. J Food Prot 62:336–342

    CAS  PubMed  Google Scholar 

  • Ogier J-C, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301. doi:10.1016/j.ijfoodmicro.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  • Okonko IO, Ogunnusi TA, Ogunjobi AA, Adedeji AO, Adejoye OD, Babalola ET, Ogun AA (2008) Microbial studies on frozen shrimps processed in Ibadan and Lagos, Nigeria. Sci Res Essays 3:537–546

    Google Scholar 

  • Oscáriz JC, Pisabarro AG (2001) Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int Microbiol 4:13–19. doi:10.1007/s101230100003

    PubMed  Google Scholar 

  • Pattanayaiying R, H-Kittikun A, Cutter CN (2014) Effect of lauric arginate, nisin Z, and a combination against several food-related bacteria. Int J Food Microbiol 188:135–146. doi:10.1016/j.ijfoodmicro.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  • Pianetti A, Falcioni T, Bruscolini F, Sabatini L, Sisti E, Papa S (2005) Determination of the viability of Aeromonas hydrophila in different types of water by flow cytometry, and comparison with classical methods. Appl Environ Microbiol 71:7948–7954. doi:10.1128/AEM.71.12.7948-7954.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pilet M-F, Leroi F (2011) 13—Applications of protective cultures, bacteriocins and bacteriophages in fresh seafood and seafood products. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, Woodhead Publishing series in food science, technology and nutrition. Woodhead, Cambridge, UK, pp 324–347

    Chapter  Google Scholar 

  • Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira P, Gibbs PA (2009) Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58. doi:10.1016/j.ijfoodmicro.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  • Pitt TL, Gaston MA (1995) Bacteriocin typing. In: Howard J, Whitcombe DM (eds) Diagnostic bacteriology protocols. Humana, Totowa, NJ, pp 5–14

    Chapter  Google Scholar 

  • Raju CV, Shamasundar BA, Udupa KS (2003) The use of nisin as a preservative in fish sausage stored at ambient (28 ± 2 °C) and refrigerated (6 ± 2 °C) temperatures. Int J Food Sci Technol 38:171–185. doi:10.1046/j.1365-2621.2003.00663.x

    Article  CAS  Google Scholar 

  • Rall VLM, Iaria ST, Heidtmann S, Pimenta FC, Gamba RC, Pedroso DMM (1998) Aeromonas species isolated from Pintado fish (Pseudoplatystoma sp): virulence factors and drug susceptibility. Rev Microbiol 29:222–227. doi:10.1590/S0001-37141998000300015

    Article  CAS  Google Scholar 

  • Ramos A, Neves AR, Santos H (2002) Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Antonie Van Leeuwenhoek 82:249–261. doi:10.1023/A:1020664422633

    Article  CAS  PubMed  Google Scholar 

  • Risøen PA, Rønning P, Hegna IK, Kolstø A-B (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. J Appl Microbiol 96:648–655

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Zarzuela I, de Bias I, Gironés O, Ghittino C, Múazquiz JL (2005) Isolation of Vagococcus salmoninarum in rainbow trout, Oncorhynchus mykiss (Walbaum), broodstocks: characterization of the pathogen. Vet Res Commun 29:553–562. doi:10.1007/s11259-005-2493-8

    Article  CAS  PubMed  Google Scholar 

  • Ryan KJ, Ray CG, Sherris JC (2010) Sherris medical microbiology. McGraw Hill, New York

    Google Scholar 

  • Saito T (2004) Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilus group and their applications to functional foods. Anim Sci J 75:1–13. doi:10.1111/j.1740-0929.2004.00148.x

    Article  CAS  Google Scholar 

  • Savadogo A, Ouattara AC, Bassole HI, Traore SA (2006) Bacteriocins and lactic acid bacteria—a minireview. Afr J Biotechnol 5:678–683. doi:10.4314/ajb.v5i9.42771

    CAS  Google Scholar 

  • Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164. doi:10.1016/0924-2244(96)81256-8

    Article  CAS  Google Scholar 

  • Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W (1985) Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst Appl Microbiol 6:183–195. doi:10.1016/S0723-2020(85)80052-7

    Article  CAS  Google Scholar 

  • Schmidtke LM, Carson J (1994) Characteristics of Vagococcus salmoninarum isolated from diseased salmonid fish. J Appl Bacteriol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21:134–156. doi:10.1128/CMR.00032-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sidira M, Galanis A, Nikolaou A, Kanellaki M, Kourkoutas Y (2014) Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control 42:315–320. doi:10.1016/j.foodcont.2014.02.024

    Article  CAS  Google Scholar 

  • Simon SS, Sanjeev S (2007) Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control 18:1565–1568. doi:10.1016/j.foodcont.2006.12.007

    Article  CAS  Google Scholar 

  • Slover CM, Danziger L (2008) Lactobacillus: a review. Clin Microbiol Newsl 30:23–27. doi:10.1016/j.clinmicnews.2008.01.006

    Article  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345

    Article  CAS  PubMed  Google Scholar 

  • Su Y-C, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558. doi:10.1016/j.fm.2007.01.005

    Article  PubMed  Google Scholar 

  • Takeshi Z, Shin’ya S, Yasuhide T, Sayaka S, Jiro N, Kenji S (n.d.) Biopreservation using bacteriocins from lactic acid bacteria. Rep Cent Adv Instrum Anal Kyushu Univ

    Google Scholar 

  • Teophilo G, Vieira R dos F, Rodrigues D dos P, Menezes FR (2002) Escherichia coli isolated from seafood: toxicity and plasmid profiles. Int Microbiol 5:11–14. doi:10.1007/s10123-002-0052-5

  • Teuber M, Geis A (2006) The genus Lactococcus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 205–228

    Chapter  Google Scholar 

  • Thampuran N, Surendraraj A, Surendran PK (2005) Level of Escherichia coli in seafood in domestic trade and their antibiotic resistance pattern. Fish Technol 42(2):209–216

    Google Scholar 

  • Todar K (2008) Lactic acid bacteria. Todar’s Online textbook of bacteriology (online). Available www.textbookofbacteriology.net (7 June 2014)

  • Tomé E, Gibbs PA, Teixeira PC (2008a) Growth control of Listeria innocua 2030c on vacuum-packaged cold-smoked salmon by lactic acid bacteria. Int J Food Microbiol 121:285–294. doi:10.1016/j.ijfoodmicro.2007.11.015

    Article  PubMed  CAS  Google Scholar 

  • Tomé E, Pereira VL, Lopes CI, Gibbs PA, Teixeira PC (2008b) In vitro tests of suitability of bacteriocin-producing lactic acid bacteria, as potential biopreservation cultures in vacuum-packaged cold-smoked salmon. Food Control 19:535–543. doi:10.1016/j.foodcont.2007.06.004

    Article  CAS  Google Scholar 

  • Vermeiren L, Devlieghere F, Debevere J (2004) Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. Int J Food Microbiol 96:149–164. doi:10.1016/j.ijfoodmicro.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  • Vignolo G, Saavedra L, Sesma F, Raya R (2012) Food bioprotection: lactic acid bacteria as natural preservatives. In: Bhat R, Alias AK, Paliyath G (eds) Progress in food preservation. Wiley-Blackwell, Oxford, pp 451–483

    Chapter  Google Scholar 

  • Yin L-J, Wu C-W, Jiang S-T (2007) Biopreservative effect of pediocin ACCEL on refrigerated seafood. Fish Sci 73:907–912. doi:10.1111/j.1444-2906.2007.01413.x

    Article  CAS  Google Scholar 

  • Yousuf AHM, Ahmed K, Yeasmin S, Ahsan N, Rahman M, Islam M (2008) Prevalence of microbial load in shrimp, Penaeus monodon and prawn, Macrobrachium rosenbergii from Bangladesh. World J Agric Sci 4:852–855

    Google Scholar 

  • Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2:50–56. doi:10.1016/j.apcbee.2012.06.010

    Article  CAS  Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429. doi:10.1007/s00253-006-0514-3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noraphat Hwanhlem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hwanhlem, N., H-Kittikun, A. (2015). Biopreservation of Seafood by Using Bacteriocins and Bacteriocinogenic Lactic Acid Bacteria as Potential Bio-control Agents. In: Liong, MT. (eds) Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas. Microbiology Monographs, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-23183-9_9

Download citation

Publish with us

Policies and ethics