Skip to main content

Quantum Quadratic Stochastic Operators

  • Chapter
Quantum Quadratic Operators and Processes

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2133))

  • 764 Accesses

Abstract

It is known that there are many systems which are described by nonlinear operators. One of the simplest nonlinear cases is the quadratic one. In the previous chapters we have considered classical (i.e. commutative) quadratic operators. These operators were defined over commutative algebras. However, such operators do not cover the case of quantum systems. Therefore, in the present chapter, we are going to introduce a noncommutative analogue of a q.s.o., which is called a quantum quadratic stochastic operator (q.q.s.o.). We will show that the set of q.q.s.o.s is weakly compact. By means of q.q.s.o.s one can define a nonlinear operator which is called a quadratic operator. We also study the asymptotically stability of the dynamics of quadratic operators. Moreover, in this chapter we recall the definition of quantum Markov chains and establish that each q.q.s.o. defines a quantum Markov chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson, J., Lin, M., Weiss, B.: Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products. Isr. J. Math. 33(3–4), 198–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Accardi, L.: On the noncommutative Markov property. Funct. Anal. Appl. 9, 1–8 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Accardi, L.: Nonrelativistic quantum mechanics as a noncommutative Markov process. Adv. Math. 20, 329–366 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Accardi, L., Ceccini, C.: Conditional expectation in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Accardi, L., Fidaleo, F.: Quantum Markov fields. Inf. Dim. Anal. Quantum Probab. Related Topics* 6, 123–138 (2003)

    Google Scholar 

  6. Accardi, L., Fidaleo, F., Mukhamedov, F.: Markov states and chains on the CAR algebra. Inf. Dim. Analysis, Quantum Probab. Related Topics 10, 165–183 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. Royal Irish Acad. 83A, 251–263 (1983)

    MathSciNet  Google Scholar 

  8. Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree I: Uniqueness of the associated chain with XY-model on the Cayley tree of order two. Inf. Dim. Anal. Quantum Probab. Related Topics 14, 443–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Accardi, L., Ohno, H., Mukhamedov, F.: Quantum Markov fields on graphs. Inf. Dim. Analysis, Quantum Probab. Related Topics 13, 165–189 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York, Heidelberg, Berlin (1979)

    Book  Google Scholar 

  11. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. In: Grundlehren Math. Wiss., vol. 245. Springer, Berlin (1982)

    Google Scholar 

  12. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franz, U., Skalski, A.: On ergodic properties of convolution operators associated with compact quantum groups. Colloq. Math. 113, 13–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganikhodzhaev, N.N., Mukhamedov, F.M.: On quantum quadratic stochastic processes and ergodic theorems for such processes. Uzbek. Math. J. (3), 8–20 (1997) (Russian)

    MathSciNet  Google Scholar 

  15. Ganikhodjaev, N.N., Mukhamedov, F.M.: Regularity conditions for quantum quadratic stochastic processes. Dokl. Math. 59, 226–228 (1999)

    Google Scholar 

  16. Gudder, S.: Quantum Markov chains. J. Math. Phys. 49, 72105 (2008)

    Article  MathSciNet  Google Scholar 

  17. Gudder, S.: Document transition effect matrices and quantum Markov chains. Found. Phys. 39, 573–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jantzen, J.C.: Lectures on Quantum Groups. AMS, Providence (1995)

    Book  Google Scholar 

  19. Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. J. Am. Math. Soc. 20, 385–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer, New York (1976)

    Book  MATH  Google Scholar 

  21. Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin-New York (1985)

    Book  MATH  Google Scholar 

  22. Kummerer, B.: Quantum Markov processes and applications in physics. Lecture Notes in Mathematics, Springer-Verlag, vol. 1866, pp. 259–330 (2006)

    Article  MathSciNet  Google Scholar 

  23. Lusztig, G.: Introduction to Quantum Groups. Birkhauser, Basel (2010)

    Book  MATH  Google Scholar 

  24. Majewski, W.A., Marciniak, M.: On nonlinear Koopman’s construction. Rep. Math. Phys. 40, 501–508 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)

    Article  Google Scholar 

  26. Mukhamedov, F.M.: Ergodic properties of conjugate quadratic operators. Uzbek. Math. J. (1), 71–79 (1998) (Russian)

    MathSciNet  Google Scholar 

  27. Mukhamedov, F.M.: On compactness of some sets of positive maps on von Neumann algebras. Methods Funct. Anal. Topol. 5, 26–34 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Mukhamedov, F.M.: On uniform ergodic theorem for quadratic processes on C -algebras. Sbornik: Math. 191, 1891–1903 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mukhamedov, F.M.: On the Blum–Hanson theorem for quantum quadratic processes. Math. Notes 67, 81–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mukhamedov, F.M.: On the compactness of a set of quadratic operators defined on a von Neumann algebra. Uzbek. Math. J. (3), 21–25 (2000) (Russian)

    MathSciNet  Google Scholar 

  31. Mukhamedov, F.M.: On a limit theorem for quantum quadratic processes. Dokl. Natl. Acad. Ukraine, (11), 25–27 (2000) (Russian)

    MathSciNet  Google Scholar 

  32. Mukhamedov, F.M.: On ergodic properties of discrete quadratic dynamical system on C -algebras. Methods Funct. Anal. Topol. 7(1), 63–75 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Mukhamedov, F.M.: An individual ergodic theorem on time subsequences for quantum quadratic dynamical systems. Uzbek. Math. J. (2), 46–50 (2002) (Russian)

    MathSciNet  Google Scholar 

  34. Mukhamedov, F., Abduganiev, A.: On description of bistochastic Kadison–Schwarz operators on \(M_{2}(\mathbb{C})\). Open Sys. Inform. Dyn. 17, 245–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nielsen, M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Ozawa, M.: Continuous affine functions on the space of Markov kernels. Theory Probab. Appl. 30, 516–528 (1986)

    Article  MATH  Google Scholar 

  37. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  38. Podles, P., Muller, E.: Introduction to quantum groups. Rev. Math. Phys. 10, 511–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Robertson, A.P., Robertson, W.J.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  40. Sakai, S.: C -algebras and W -algebras. In: Ergeb. Math. Grenzgeb. (2), vol. 60. Springer, Berlin (1971)

    Google Scholar 

  41. Soltan, P.M.: Quantum SO(3) groups and quantum group actions on M 2. J. Noncommut. Geom. 4, 1–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stratila, S., Zsido, L.: Lectures in von Neumann Algebras. Macmillan Education, Australi (1979)

    Google Scholar 

  43. Takesaki, M.: Theory of Operator Algebras, I. Springer, Berlin–Heidelberg–New York (1979)

    Book  MATH  Google Scholar 

  44. Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111, 613–665 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mukhamedov, F., Ganikhodjaev, N. (2015). Quantum Quadratic Stochastic Operators. In: Quantum Quadratic Operators and Processes. Lecture Notes in Mathematics, vol 2133. Springer, Cham. https://doi.org/10.1007/978-3-319-22837-2_5

Download citation

Publish with us

Policies and ethics