Quantum Quadratic Stochastic Operators

  • Farrukh Mukhamedov
  • Nasir Ganikhodjaev
Part of the Lecture Notes in Mathematics book series (LNM, volume 2133)


It is known that there are many systems which are described by nonlinear operators. One of the simplest nonlinear cases is the quadratic one. In the previous chapters we have considered classical (i.e. commutative) quadratic operators. These operators were defined over commutative algebras. However, such operators do not cover the case of quantum systems. Therefore, in the present chapter, we are going to introduce a noncommutative analogue of a q.s.o., which is called a quantum quadratic stochastic operator (q.q.s.o.). We will show that the set of q.q.s.o.s is weakly compact. By means of q.q.s.o.s one can define a nonlinear operator which is called a quadratic operator. We also study the asymptotically stability of the dynamics of quadratic operators. Moreover, in this chapter we recall the definition of quantum Markov chains and establish that each q.q.s.o. defines a quantum Markov chain.


Quantum Group Weak Topology Markov State Markov Operator Quadratic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aaronson, J., Lin, M., Weiss, B.: Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products. Isr. J. Math. 33(3–4), 198–224 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Accardi, L.: On the noncommutative Markov property. Funct. Anal. Appl. 9, 1–8 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Accardi, L.: Nonrelativistic quantum mechanics as a noncommutative Markov process. Adv. Math. 20, 329–366 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Accardi, L., Ceccini, C.: Conditional expectation in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 6.
    Accardi, L., Fidaleo, F.: Quantum Markov fields. Inf. Dim. Anal. Quantum Probab. Related Topics* 6, 123–138 (2003)Google Scholar
  6. 8.
    Accardi, L., Fidaleo, F., Mukhamedov, F.: Markov states and chains on the CAR algebra. Inf. Dim. Analysis, Quantum Probab. Related Topics 10, 165–183 (2007)MathSciNetzbMATHGoogle Scholar
  7. 9.
    Accardi, L., Frigerio, A.: Markovian cocycles. Proc. Royal Irish Acad. 83A, 251–263 (1983)MathSciNetGoogle Scholar
  8. 10.
    Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree I: Uniqueness of the associated chain with XY-model on the Cayley tree of order two. Inf. Dim. Anal. Quantum Probab. Related Topics 14, 443–463 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 12.
    Accardi, L., Ohno, H., Mukhamedov, F.: Quantum Markov fields on graphs. Inf. Dim. Analysis, Quantum Probab. Related Topics 13, 165–189 (2010)MathSciNetzbMATHGoogle Scholar
  10. 25.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York, Heidelberg, Berlin (1979)CrossRefGoogle Scholar
  11. 33.
    Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. In: Grundlehren Math. Wiss., vol. 245. Springer, Berlin (1982)Google Scholar
  12. 41.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 45.
    Franz, U., Skalski, A.: On ergodic properties of convolution operators associated with compact quantum groups. Colloq. Math. 113, 13–23 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 57.
    Ganikhodzhaev, N.N., Mukhamedov, F.M.: On quantum quadratic stochastic processes and ergodic theorems for such processes. Uzbek. Math. J. (3), 8–20 (1997) (Russian)MathSciNetGoogle Scholar
  15. 59.
    Ganikhodjaev, N.N., Mukhamedov, F.M.: Regularity conditions for quantum quadratic stochastic processes. Dokl. Math. 59, 226–228 (1999)Google Scholar
  16. 94.
    Gudder, S.: Quantum Markov chains. J. Math. Phys. 49, 72105 (2008)MathSciNetCrossRefGoogle Scholar
  17. 95.
    Gudder, S.: Document transition effect matrices and quantum Markov chains. Found. Phys. 39, 573–592 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 111.
    Jantzen, J.C.: Lectures on Quantum Groups. AMS, Providence (1995)CrossRefGoogle Scholar
  19. 115.
    Junge, M., Xu, Q.: Noncommutative maximal ergodic theorems. J. Am. Math. Soc. 20, 385–439 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 116.
    Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer, New York (1976)CrossRefzbMATHGoogle Scholar
  21. 128.
    Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin-New York (1985)CrossRefzbMATHGoogle Scholar
  22. 129.
    Kummerer, B.: Quantum Markov processes and applications in physics. Lecture Notes in Mathematics, Springer-Verlag, vol. 1866, pp. 259–330 (2006)MathSciNetCrossRefGoogle Scholar
  23. 136.
    Lusztig, G.: Introduction to Quantum Groups. Birkhauser, Basel (2010)CrossRefzbMATHGoogle Scholar
  24. 142.
    Majewski, W.A., Marciniak, M.: On nonlinear Koopman’s construction. Rep. Math. Phys. 40, 501–508 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 153.
    May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)CrossRefGoogle Scholar
  26. 158.
    Mukhamedov, F.M.: Ergodic properties of conjugate quadratic operators. Uzbek. Math. J. (1), 71–79 (1998) (Russian)MathSciNetGoogle Scholar
  27. 159.
    Mukhamedov, F.M.: On compactness of some sets of positive maps on von Neumann algebras. Methods Funct. Anal. Topol. 5, 26–34 (1999)MathSciNetzbMATHGoogle Scholar
  28. 161.
    Mukhamedov, F.M.: On uniform ergodic theorem for quadratic processes on C -algebras. Sbornik: Math. 191, 1891–1903 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 162.
    Mukhamedov, F.M.: On the Blum–Hanson theorem for quantum quadratic processes. Math. Notes 67, 81–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 164.
    Mukhamedov, F.M.: On the compactness of a set of quadratic operators defined on a von Neumann algebra. Uzbek. Math. J. (3), 21–25 (2000) (Russian)MathSciNetGoogle Scholar
  31. 166.
    Mukhamedov, F.M.: On a limit theorem for quantum quadratic processes. Dokl. Natl. Acad. Ukraine, (11), 25–27 (2000) (Russian)MathSciNetGoogle Scholar
  32. 167.
    Mukhamedov, F.M.: On ergodic properties of discrete quadratic dynamical system on C -algebras. Methods Funct. Anal. Topol. 7(1), 63–75 (2001)MathSciNetzbMATHGoogle Scholar
  33. 170.
    Mukhamedov, F.M.: An individual ergodic theorem on time subsequences for quantum quadratic dynamical systems. Uzbek. Math. J. (2), 46–50 (2002) (Russian)MathSciNetGoogle Scholar
  34. 179.
    Mukhamedov, F., Abduganiev, A.: On description of bistochastic Kadison–Schwarz operators on \(M_{2}(\mathbb{C})\). Open Sys. Inform. Dyn. 17, 245–253 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 199.
    Nielsen, M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  36. 201.
    Ozawa, M.: Continuous affine functions on the space of Markov kernels. Theory Probab. Appl. 30, 516–528 (1986)CrossRefzbMATHGoogle Scholar
  37. 203.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  38. 205.
    Podles, P., Muller, E.: Introduction to quantum groups. Rev. Math. Phys. 10, 511–551 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 208.
    Robertson, A.P., Robertson, W.J.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964)zbMATHGoogle Scholar
  40. 226.
    Sakai, S.: C -algebras and W -algebras. In: Ergeb. Math. Grenzgeb. (2), vol. 60. Springer, Berlin (1971)Google Scholar
  41. 240.
    Soltan, P.M.: Quantum SO(3) groups and quantum group actions on M 2. J. Noncommut. Geom. 4, 1–28 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 242.
    Stratila, S., Zsido, L.: Lectures in von Neumann Algebras. Macmillan Education, Australi (1979)Google Scholar
  43. 246.
    Takesaki, M.: Theory of Operator Algebras, I. Springer, Berlin–Heidelberg–New York (1979)CrossRefzbMATHGoogle Scholar
  44. 253.
    Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111, 613–665 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Farrukh Mukhamedov
    • 1
  • Nasir Ganikhodjaev
    • 1
  1. 1.Dept. of Comput. & Theor. SciencesInternational Islamic University MalaysiaKuantanMalaysia

Personalised recommendations