Skip to main content

CO2 Sequestration Through Algal Biomass Production

  • Chapter
Algal Biorefinery: An Integrated Approach

Abstract

The world is facing the threat of global warming. This is associated with the modernization and increasing dependency of human beings on the fossil fuel. Fossil fuel are necessary for providing the increasing demand on energy. However, their combustion produces greenhouse gases such as carbon dioxide, methane, ozone, NOx, water vapour etc. (Kumar K et al., Bioresour Technol 102(8):4945–4953, 2011). CO2 is also continuously being added into the earth’s atmosphere through several natural sources such as volcanic eruptions, combustion of organic matters, autotrophic and heterotrophic respiration (Kumar K, Das D, Carbon dioxide sequestration by biological processes. In: Bhanage BM, Arai M (eds) Transformation and utilization of carbon dioxide. Springer, Heidelberg, pp 303–334, 2014; Sharma A et al., Enzyme Microb Technol 48:416–426, 2011). However, robust natural mechanisms of CO2 capture could maintain the balance of CO2 in the earth’s atmosphere. Global carbon cycle is disturbed mainly due to anthropogenic emissions of CO2 because of human activity (Kumar K, Das D, Carbon dioxide sequestration by biological processes. In: Bhanage BM, Arai M (eds) Transformation and utilization of carbon dioxide. Springer, Heidelberg, pp 303–334, 2014). Coal is the major contributor of CO2, which is in the range of 14–17 % depending upon its quality. Therefore, coal-based industries such as cement, steel and thermal power plants pollute the earth’s environment to a greater extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D.E., Strazisar, B.R., Soong, Y. and Hedges, S.W. (2005). Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities. Fuel Process Technol., 86(14), 1569–1580.

    Article  CAS  Google Scholar 

  • Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Mgmt., 41, 953–970.

    Article  CAS  Google Scholar 

  • Barbosa, M.J., Janssen, M., Ham, N., Tramper, J. and Wijffels, R.H. (2003). Microalgae cultivation in airlift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol. Bioeng., 82(2), 170–179.

    Article  CAS  Google Scholar 

  • Bardgett, R.D., Freeman, C. and Ostle, N.J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.

    Article  CAS  Google Scholar 

  • Basu, S., Roy, A.S., Mohanty, K. and Ghoshal, A.K. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour. Technol., 143, 369–377.

    Google Scholar 

  • Brennan, L. and Owende, P. (2010). Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14, 217–232.

    Article  Google Scholar 

  • Calvin, M. and Benson, A.A. (1948). The path of carbon in photosynthesis. Science, 107, 476–480.

    Article  CAS  Google Scholar 

  • Carvalho, A.P., Luis, A., Meireles, A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog., 22, 1490–1506.

    Article  CAS  Google Scholar 

  • Chiaramonti, D., Prussi, M., Casini, D., Tredici, M.R., Rodolfi, L., Bassi, N., Zittelli, G.C. and Bondioli, P. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl. Energy, 102, 101–111.

    Article  Google Scholar 

  • Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H. and Lin, C.S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol., 100(2), 833–838.

    Article  CAS  Google Scholar 

  • Cordero, B.F., Obraztsova, I., Couso, I., Leon, R., Vargas, M.A. and Rodrigue, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs., 9, 1607–1624.

    Article  CAS  Google Scholar 

  • Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol., 24, 329–337.

    Article  CAS  Google Scholar 

  • Dayananda, C., Sarada, R., Kumar, V. and Ravishankar, G.A. (2007). Isolation and characterization of hydrocarbon producing green alga Bortyococcus braunii from Indian freshwater bodies. Electron. J. Biotechnol., 10, 78–91.

    Article  Google Scholar 

  • deGodos, I., Mendoza, J.L., Acién, F.G., Molina, E., Banks, C.J., Heaven, S. and Rogalla, F. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol., 153, 307–314.

    Article  CAS  Google Scholar 

  • de Morais, M.G. and Costa, J.A.V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., 29, 1349–1352.

    Article  CAS  Google Scholar 

  • Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen,T., Rosenthal, Y., Seitzinger, S., Smetacek, V. and Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290, 291–296.

    Google Scholar 

  • Fast, A.G. and Papoutsakis, E.T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng., 1, 1–16.

    Article  Google Scholar 

  • Friis, J.C., Holm, C. and Sorensen, B.H. (1998). Evaluation of elemental composition of algal biomass as toxical endpoint. Chemosphere., 37(13), 2665–2676.

    Article  CAS  Google Scholar 

  • Geng, L., Zhang, J., Qin, B. and Yang, Z. (2014). No difference in colony formation of Scenedesmus obliquus exposed to lakes with different nutrient levels. Biochem. Sys. Ecol., 57, 178–182.

    Article  CAS  Google Scholar 

  • Giordano, M., Beardall, J. and Raven, J.A. (2005). Mechanisms in algae: Mechanisms, environmental modulation and evolution. Annu. Rev. Plant Biol., 56, 99–131.

    Article  CAS  Google Scholar 

  • Goldman, J. and Brewer, P. (1980). Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol. Oceanogr., 25, 352–357.

    Article  CAS  Google Scholar 

  • González‐López, C. V., Acién Fernández, F. G., Fernández‐Sevilla, J. M., Sánchez Fernández, J. F., & Molina Grima, E. (2012). Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnology and bioengineering, 109(7), 1637–1650.

    Article  Google Scholar 

  • Hreiz, R., Sialve, B., Morchain, J., Escudié, R., Steyer, J.-P. and Guiraud, P. (2014). Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem. Eng. J., 250, 230–239.

    Article  CAS  Google Scholar 

  • Hu, Q., Guterman, H. and Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng., 51, 51–60.

    Article  CAS  Google Scholar 

  • Hulatt, C.J. and Thomas, D.N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour. Technol., 102, 5775–5787.

    Article  CAS  Google Scholar 

  • Iwasaki, I., Hu, Q., Kurano, N. and Miyachi, S. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem. Photobiol. B-Biol., 44(3), 184–190.

    Article  CAS  Google Scholar 

  • Jacob-Lopes, E., Revah, S., Hernandez, S., Shirai, K. and Franco, T.T. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chem. Eng. J., 153(1–3), 120–126.

    Article  CAS  Google Scholar 

  • Jacob-Lopes, E., Scoparo, C.H.G. and Franco, T.T. (2008). Rates of CO2 removal by Aphanothece microscopic Nageli in tubular photobioreactors. Chem. Eng. Prog., 47, 1365–1373.

    Article  Google Scholar 

  • Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M. and Ghirardi, M.L. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol., 101, 1406–1413.

    Article  CAS  Google Scholar 

  • Ketheesan, B. and Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol., 108, 196–202.

    Article  CAS  Google Scholar 

  • Kim, C.W., Sung, M-G., Nam, K., Moon, M., Kwon, J-H. and Yang, J-W. (2014). Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour. Technol., 159, 30–35.

    Article  CAS  Google Scholar 

  • Kumar, K. and Das, D. (2012). Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol., 116, 307–313.

    Article  CAS  Google Scholar 

  • Kumar, K. and Das, D. (2013). CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Razeghifard, R. (ed.), Natural and Artificial Photosynthesis Solar power as an Energy Source. John Wiley and Sons, Inc., pp. 173–215.

    Google Scholar 

  • Kumar, K. and Das, D. (2014). Carbon Dioxide Sequestration by Biological Processes. In: Bhanage, B.M. and Arai, M. (eds), Transformation and Utilization of Carbon Dioxide. Springer, pp. 303–334.

    Google Scholar 

  • Kumar, K., Dasgupta, C.N. and Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol., 167, 358–366.

    Article  CAS  Google Scholar 

  • Kumar, K., Dasgupta, C.N., Nayak, BK., Lindblad, P. and Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol., 102(8), 4945–4953.

    Article  CAS  Google Scholar 

  • Kumar, K., Sirasale, A. and Das, D. (2013). Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation. Bioresour. Technol., 143, 88–95.

    Article  CAS  Google Scholar 

  • Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H. and Miyachi, S. (1995). Fixation and Utilization of Carbon-Dioxide by Microalgal Photosynthesis. Energy Convers. Mgmt., 36(6–9), 689–692.

    Google Scholar 

  • Lee, J.S. and Lee, J.P. (2003). Review of advances in biological CO2 mitigation technology. Biotechnol. Bioprocess Eng, 8, 354–359.

    Article  CAS  Google Scholar 

  • Lee, Y.K. and Pirt, S.J. (1981). Energetics of photosynthetic algal growth: Influence of intermittent illumination in short (40s) cycles. J. Gen. Microbiol., 24, 43–52.

    Google Scholar 

  • Li, S., Luo, S. and Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour. Technol., 136, 267–272.

    Article  CAS  Google Scholar 

  • Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnol. Prog., 24, 815–820.

    CAS  Google Scholar 

  • Lopez, C.V.G., Fernandez, F.G.A., Sevilla, J.M.F., Fernandez, J.F.S., Garcia, M.C.C. and Grima, E.M. (2009). Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100(23), 5904–5910.

    Article  Google Scholar 

  • Loubiere, K., Olivo, E., Bougaran, G., Pruvost, J., Robert, R. and Legrand, J. (2009). A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotech. Bioeng., 102(1), 132–147.

    Article  CAS  Google Scholar 

  • Lubian, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., Gonzalez-del Valle, M. and Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol., 12(3–5), 249–255.

    Article  Google Scholar 

  • Mendoza, J.L., Granados, M.R., de Godos, I., Acién, F.G., Molina, E., Banks, C. and Heaven, S. (2013). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenerg., 54, 267–275.

    Article  CAS  Google Scholar 

  • Mirjafari, P., Asghari, K. and Mahinpey, N. (2007). Investigating the Application of Enzyme Carbonic Anhydrase for CO2 Sequestration Purposes. Ind. Eng. Chem. Res., 46, 921–926.

    Article  CAS  Google Scholar 

  • Miyairi, S. (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Convers. Mgmt., 36(6–9), 763–766.

    Google Scholar 

  • Oswald, W.J. and Golueke, C.G. (1960). Biological transformation of solar energy. Adv. Appl. Microbiol., 11, 223–242.

    Article  Google Scholar 

  • Rao, A.R., Ravishankar, G.A. and Sarada, R.(2012). Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour. Technol., 123, 528–533.

    Article  Google Scholar 

  • Richardson, J.W., Johnson, M.D. and Outlaw, J.L. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research., 1, 93–100.

    Article  Google Scholar 

  • Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Hydrobiologia., 512, 33–37.

    Article  Google Scholar 

  • Rizzo, A.M., Prussi, M., Bettucci, L., Libelli, I.M. and Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy, 102, 24–31.

    Article  CAS  Google Scholar 

  • Scragg, A.H., Illman, A.M., Carden, A. and Shales, S.W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenerg., 23(1), 67–73.

    Article  CAS  Google Scholar 

  • Segovia, M., Haramaty, L., Berges, J.A. and Falkowski, P.G. (2003). Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol., 132(1), 99–105.

    Article  CAS  Google Scholar 

  • Sharma, A., Bhattacharya, A. and Shrivastava, A. (2011). Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb. Technol., 48, 416–426.

    Article  CAS  Google Scholar 

  • Spalding, M.H. (2008). Microalgal carbon dioxide concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Biol., 59(7), 1463–1473.

    CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101(2), 87–96.

    Article  CAS  Google Scholar 

  • Sutherland, D.L., Turnbull, M.H. and Craggs, R.J. (2014). Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Research, 53, 271–281.

    Article  CAS  Google Scholar 

  • Sydney, E.B., Sturm, W., de Carvalho, J.C., Soccol, V.T., Larroche, C., Pandey, A. and Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol., 88(10), 3291–3294.

    Google Scholar 

  • Sydney, E.B., Novak, A.C., de Carcalho, J.C. and Soccol, C.R. (2014). Respirometric balance and carbon fixation of industrially important algae. In: A. Paney, D.-J. Lee, Y. Chisti and C.R. Soccol (eds.), Biofuels from algae. Elsevier, MA, USA, pp. 67–84.

    Google Scholar 

  • Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J. and Jun Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour. Technol., 167, 276–283.

    Article  CAS  Google Scholar 

  • Wang, B., Li, Y.Q., Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol., 79(5), 707–718.

    Article  CAS  Google Scholar 

  • Watanabe, Y. and Hall, D.O. (1996). Photosynthetic production of the filamentous Cyanobacterium Spirulina platensis in a cone-shaped helical tubular photo-bioreactor. Appl. Microbiol. Biotechnol., 44, 693–698.

    CAS  Google Scholar 

  • Weissman, J.C., Goebel, R.P. and Benemann, J.R. (1988). Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol. Bioeng., 31, 336–344.

    Article  CAS  Google Scholar 

  • Whitmarsh, J. and Govindjee (1999). The photosynthetic process. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., Govindjee (eds), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishers, New Delhi and Kluwer Academic, Dordrecht, pp 11–51.

    Google Scholar 

  • Xu, B., Li, P. and Waller, P. (2014). Study of the flow mixing in a novel ARID raceway for algae production. Renew. Energy., 62, 249–257.

    Article  Google Scholar 

  • Yamakawa, H. and Itoh, S. (2013). Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: Desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry., 52, 4451–4459.

    Article  CAS  Google Scholar 

  • Yang, X., Xiang, W., Zhang, F., Wu, H., He, H. and Fan, J. (2013). Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas. Sheng Wu Gong Cheng Xue Bao., 29, 370–381.

    Google Scholar 

  • Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101 Suppl 1, S71–74.

    Google Scholar 

  • Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I. and Yang, J.W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol., 69(4), 451–455.

    Google Scholar 

  • Zeng, X., Danquah, M.K., Chen, X.D. and Lu, Y. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renew. Sust. Energ Rev., 15, 3252–3260.

    Article  CAS  Google Scholar 

  • Zhang, K., Miyachi, S. and Kurano, N. (2001). Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: Effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol., 55(4), 428–433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728) and the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Knowledge Economy (2012T100201665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanhaiya Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Kumar, K., Mishra, S.K., Choi, GG., Yang, JW. (2015). CO2 Sequestration Through Algal Biomass Production. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_2

Download citation

Publish with us

Policies and ethics