Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 19))

Abstract

This chapter presents a SPICE-compatible device model of a voltage-controlled bipolar memristor which explains memristive behavior while primarily attributing the switching effect to an effective tunneling distance modulation. This model satisfies the desired memristive fingerprints and involves significantly low-complexity operation under an unlimited set of frequencies over a wide range of applied voltages. The SPICE simulation results are found in good qualitative and quantitative agreement with the theoretical formulation of the model. Also, the model represents well the complex switching behavior of memristor when fitted to other widely used published models. Therefore, it can be used to provide accurate enough circuit simulations for a wide range of memristor devices and voltage inputs, while it can be incorporated as a circuit element in any current computer-aided design work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(May), 80–83 (2008)

    Article  Google Scholar 

  2. K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi, D. Abbott, Memristive device fundamentals and modeling: applications to circuits and systems simulation. IEEE Proc. 100(6), 1991–2007 (2012)

    Article  Google Scholar 

  3. T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Dev. 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  4. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors. IEEE Proc. 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  5. E. Lehtonen, M. Laiho, CNN using memristors for neighborhood connections, in 12th International Workshop Cellular Nanoscale Network Applications (CNNA), Berkeley, CA (2010)

    Google Scholar 

  6. S. Shin, K. Kim, S. Kang, Compact models for memristors based on charge-flux constitutive relationships, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Google Scholar 

  7. C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, S. Rogers, A memristor device model. IEEE El. Dev. Lett. 32(10), 1436–1438 (2011)

    Article  Google Scholar 

  8. S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: threshold adaptive memristor model. IEEE Trans. Circ. Syst. I Reg. Papers. 60(1), 211–221 (2013)

    Google Scholar 

  9. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

  10. Y.N. Joklekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)

    Article  MATH  Google Scholar 

  11. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  12. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94(3), 515–519 (2009)

    Article  Google Scholar 

  13. R.S. Williams, M.D. Pickett, J.P. Strachan, Physics-based memristor models, in IEEE Int. Symp. Circuits Syst. (ISCAS), Beijing (2013)

    Google Scholar 

  14. Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  15. D. Batas, H. Fiedler, A memristor SPICE implementation and a new approach for magnetic flux controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)

    Article  Google Scholar 

  16. A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Google Scholar 

  17. S. Benderli, T. Wey, On SPICE macromodelling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)

    Article  Google Scholar 

  18. M. Mahvash, A.C. Parker, A memristor SPICE model for designing memristor circuits, in 53rd IEEE International Midwest Symposium on Circuits Systems (MWSCAS), Seattle, WA (2010)

    Google Scholar 

  19. H. Abdalla, M.D. Pickett, SPICE modeling of memristors, in IEEE Int. Symp. Circuits Syst. (ISCAS), Rio de Janeiro (2011)

    Google Scholar 

  20. M.J. Sharifi, Y.M. Banadaki, General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuit Syst. Comp. 19(2), 407–424 (2010)

    Article  Google Scholar 

  21. A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)

    Article  Google Scholar 

  22. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  23. I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)

    Article  Google Scholar 

  24. L.I. Schiff, Quantum mechanics, in International Series in Pure and Application Physics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 100–104

    Google Scholar 

  25. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Reg. Papers 60(11), 3008–3021 (2013)

    Article  MathSciNet  Google Scholar 

  26. I. Vourkas, A. Batsos, G.Ch. Sirakoulis, SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015)

    Google Scholar 

  27. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide RRAM. IEEE Proc. 100(6), 1951–1970 (2012)

    Article  Google Scholar 

  28. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011)

    Article  MATH  Google Scholar 

  29. K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, S.-M. Kang, Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(8), 1407–1416 (2011)

    Article  Google Scholar 

  30. E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)

    Article  Google Scholar 

  31. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Vourkas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vourkas, I., Sirakoulis, G.C. (2016). Memristor Modeling. In: Memristor-Based Nanoelectronic Computing Circuits and Architectures. Emergence, Complexity and Computation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-22647-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22647-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22646-0

  • Online ISBN: 978-3-319-22647-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics