Neurobehavioral Comorbidities of Epilepsy: Lessons from Animal Models

  • Andrey MazaratiEmail author
Part of the Neuropsychiatric Symptoms of Neurological Disease book series (NSND)


Animal models can afford useful insights into the mechanisms of neurobehavioral comorbidities of epilepsy. However, clinical relevance and value of the information that can be extracted from animal studies depend on many factors, including choice of proper models of epilepsy, choice of proper behavioral tasks, and accounting for the presence of multiple concurrent neurobehavioral disorders in the same epileptic animal. This chapter offers an overview of approaches used to examine selected neurobehavioral comorbidities in animal models of epilepsy. Assays used to study spatial and object memory, depression, anxiety, attention deficit/hyperactivity disorder, psychosis, and autism are described. First, the approaches are presented from a standpoint of single comorbidity, and mechanisms underlying respective epilepsy-associated neurobehavioral abnormalities are discussed. Further, examples are given as to how concurrent neurobehavioral perturbations may influence one another, and therefore how this may affect outcome measures and interpretation of the obtained data. It is suggested that systemic approach, rather than more commonly used isolated approach, offers more clinical-relevant and complete description of multifactorial systems that underlie neurobehavioral comorbidities of epilepsy.


Epilepsy Behavior Animal models Cognition Memory Depression Anxiety Attention deficit/hyperactivity disorder Psychosis Autism 



The author wishes to thank Ms. Katherine Shin, Mr. Nathaniel Shin, and Mr. Don Shin for their creative assistance.


  1. 1.
    Baumans V. Science-based assessment of animal welfare: laboratory animals. Rev Sci Tech. 2005;24(2):503–13.PubMedGoogle Scholar
  2. 2.
    Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, Garcia-Franco M, et al. A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol. 2013;67(3):506–30.PubMedCrossRefGoogle Scholar
  3. 3.
    van der Staay FJ, Arndt SS, Nordquist RE. Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct. 2009;5:11.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Jentsch JD. Genetic vasopressin deficiency facilitates performance of a lateralized reaction-time task: altered attention and motor processes. J Neurosci. 2003;23(3):1066–71.PubMedGoogle Scholar
  5. 5.
    Jentsch JD. Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res. 2005;157(2):323–30.PubMedCrossRefGoogle Scholar
  6. 6.
    D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001;36(1):60–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Brandeis R, Brandys Y, Yehuda S. The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci. 1989;48(1–2):29–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Bures J, Fenton AA, Kaminsky Y, Zinyuk L. Place cells and place navigation. Proc Natl Acad Sci U S A. 1997;94(1):343–50.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, et al. Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci. 2008;28(44):11250–62.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    O’Keefe J, Nadel L. The hippocampus as a cognitive map. London: Oxford University Press; 1978. 584 p.Google Scholar
  12. 12.
    Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature. 2011;469(7330):397–401.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Derdikman D, Moser MB. A dual role for hippocampal replay. Neuron. 2010;65(5):582–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Cavalheiro EA, Naffah-Mazzacoratti MG, Mello LE, Leite JP. The pilocarpine model of seizures. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizures and epilepsy. Amsterdam et al.: Elsevier; 2006. p. 433–48.CrossRefGoogle Scholar
  15. 15.
    Dudek FE, Hellier JL, Williams PA, Ferraro DJ, Staley KJ. The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus. Prog Brain Res. 2002;135:53–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Coulter DA, McIntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol. 2002;12(2):240–56.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Detour J, Schroeder H, Desor D, Nehlig A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 2005;46(4):499–508.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu X, Muller RU, Huang LT, Kubie JL, Rotenberg A, Rivard B, et al. Seizure-induced changes in place cell physiology: relationship to spatial memory. J Neurosci. 2003;23(37):11505–15.PubMedGoogle Scholar
  19. 19.
    Titiz AS, Mahoney JM, Testorf ME, Holmes GL, Scott RC. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus. 2014;24(9):1129–45.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Karnam HB, Zhou JL, Huang LT, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009;217(2):378–87.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zhou JL, Shatskikh TN, Liu X, Holmes GL. Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures. Eur J Neurosci. 2007;25(12):3667–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Dube CM, Zhou JL, Hamamura M, Zhao Q, Ring A, Abrahams J, et al. Cognitive dysfunction after experimental febrile seizures. Exp Neurol. 2009;215(1):167–77.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Barker GR, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27(11):2948–57.PubMedCrossRefGoogle Scholar
  25. 25.
    Aggleton JP, Keen S, Warburton EC, Bussey TJ. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res Bull. 1997;43(3):279–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Hammond RS, Tull LE, Stackman RW. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem. 2004;82(1):26–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, et al. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One. 2013;8(3):e57808.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zhou FW, Rani A, Martinez-Diaz H, Foster TC, Roper SN. Altered behavior in experimental cortical dysplasia. Epilepsia. 2011;52(12):2293–303.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Aniol VA, Ivanova-Dyatlova AY, Keren O, Guekht AB, Sarne Y, Gulyaeva NV. A single pentylenetetrazole-induced clonic-tonic seizure episode is accompanied by a slowly developing cognitive decline in rats. Epilepsy Behav. 2013;26(2):196–202.PubMedCrossRefGoogle Scholar
  30. 30.
    Cornejo BJ, Mesches MH, Benke TA. A single early-life seizure impairs short-term memory but does not alter spatial learning, recognition memory, or anxiety. Epilepsy Behav. 2008;13(4):585–92.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005;177(3):245–55.CrossRefGoogle Scholar
  32. 32.
    Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Overstreet DH, Wegener G. The flinders sensitive line rat model of depression – 25 years and still producing. Pharmacol Rev. 2013;65(1):143–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65(1):40–52.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29(4–5):627–47.PubMedCrossRefGoogle Scholar
  36. 36.
    Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997;134(4):319–29.CrossRefGoogle Scholar
  37. 37.
    Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29(2):247–64.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R. Comorbidity between epilepsy and depression: role of hippocampal interleukin-1beta. Neurobiol Dis. 2010;37(2):461–7.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4–5):571–625.PubMedCrossRefGoogle Scholar
  40. 40.
    Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002;13(3):169–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci. 2014;8:199.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev. 2006;30(2):203–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Aghajanian GK, Sprouse JS, Sheldon P, Rasmussen K. Electrophysiology of the central serotonin system: receptor subtypes and transducer mechanisms. Ann N Y Acad Sci. 1990;600:93–103; discussion.PubMedCrossRefGoogle Scholar
  44. 44.
    Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;417(2):181–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Sprouse JS, Aghajanian GK. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492(7429):428–32.PubMedGoogle Scholar
  47. 47.
    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Yu S, Holsboer F, Almeida OF. Neuronal actions of glucocorticoids: focus on depression. J Steroid Biochem Mol Biol. 2008;108(3–5):300–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Judge SJ, Ingram CD, Gartside SE. Moderate differences in circulating corticosterone alter receptor-mediated regulation of 5-hydroxytryptamine neuronal activity. J Psychopharmacol. 2004;18(4):475–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Chaouloff F. Serotonin, stress and corticoids. J Psychopharmacol. 2000;14(2):139–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Watson S, Gallagher P, Smith MS, Ferrier IN, Young AH. The DEX/CRH test-is it better than the DST? Psychoneuroendocrinology. 2006;31(7):889–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Mazarati A, Siddarth P, Baldwin RA, Shin D, Caplan R, Sankar R. Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine. Brain. 2008;131(Pt 8):2071–83.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Mazarati A, Shin D, Auvin S, Caplan R, Sankar R. Kindling epileptogenesis in immature rats leads to persistent depressive behavior. Epilepsy Behav. 2007;10(3):377–83.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Mazarati AM, Shin D, Kwon YS, Bragin A, Pineda E, Tio D, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis. 2009;34(3):457–61.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):854–76.PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw FZ, Chuang SH, Shieh KR, Wang YJ. Depression- and anxiety-like behaviors of a rat model with absence epileptic discharges. Neuroscience. 2009;160(2):382–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med. 2011;270(4):319–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23(25):8692–700.PubMedGoogle Scholar
  60. 60.
    Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatr. 2012;83(5):495–502.PubMedCrossRefGoogle Scholar
  61. 61.
    Bruce TO. Comorbid depression in rheumatoid arthritis: pathophysiology and clinical implications. Curr Psychiatr Rep. 2008;10(3):258–64.CrossRefGoogle Scholar
  62. 62.
    Dantzer R, Kelley KW. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci. 1989;44(26):1995–2008.PubMedCrossRefGoogle Scholar
  63. 63.
    Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM. Interleukin-1beta causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics J Am Soc Exp Neurotherap. 2012;9(2):477–85.CrossRefGoogle Scholar
  64. 64.
    Groticke I, Hoffmann K, Loscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol. 2007;207(2):329–49.PubMedCrossRefGoogle Scholar
  65. 65.
    Muller CJ, Groticke I, Bankstahl M, Loscher W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol. 2009;219(1):284–97.PubMedCrossRefGoogle Scholar
  66. 66.
    Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 2005;29(8):1193–205.PubMedCrossRefGoogle Scholar
  67. 67.
    Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–67.PubMedCrossRefGoogle Scholar
  68. 68.
    Helfer V, Deransart C, Marescaux C, Depaulis A. Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience. 1996;73(4):971–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Powell KL, Tang H, Ng C, Guillemain I, Dieuset G, Dezsi G, et al. Seizure expression, behavior, and brain morphology differences in colonies of Genetic Absence Epilepsy Rats from Strasbourg. Epilepsia. 2014;55(12):1959–68.PubMedCrossRefGoogle Scholar
  70. 70.
    Jones NC, Kumar G, O’Brien TJ, Morris MJ, Rees SM, Salzberg MR. Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats. Behav Brain Res. 2009;203(1):81–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl). 2002;163(3–4):362–80.CrossRefGoogle Scholar
  72. 72.
    Russell VA. The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev. 2000;24(1):133–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Aston-Jones G, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatr. 1999;46(9):1309–20.CrossRefGoogle Scholar
  74. 74.
    Viggiano D, Vallone D, Ruocco LA, Sadile AG. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev. 2003;27(7):683–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Reddy DS. Current pharmacotherapy of attention deficit hyperactivity disorder. Drugs Today. 2013;49(10):647–65.PubMedGoogle Scholar
  76. 76.
    Pineda E, Jentsch JD, Shin D, Griesbach G, Sankar R, Mazarati A. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav. 2014;31:267–75.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kleen JK, Sesque A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011;22(2):214–9.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Hernan AE, Alexander A, Jenks KR, Barry J, Lenck-Santini PP, Isaeva E, et al. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis. 2014;63:25–34.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatr. 2014;5:47.Google Scholar
  80. 80.
    Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162–94.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156(2–3):234–58.CrossRefGoogle Scholar
  82. 82.
    Swerdlow NR, Braff DL, Geyer MA. Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol. 2000;11(3–4):185–204.PubMedCrossRefGoogle Scholar
  83. 83.
    Geyer MA, Swerdlow NR, Mansbach RS, Braff DL. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull. 1990;25(3):485–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Bertram E. The relevance of kindling for human epilepsy. Epilepsia. 2007;48 Suppl 2:65–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60.PubMedCrossRefGoogle Scholar
  86. 86.
    Sutula TP. Secondary epileptogenesis, kindling, and intractable epilepsy: a reappraisal from the perspective of neural plasticity. Int Rev Neurobiol. 2001;45:355–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Sutula TP, Ockuly J. Kindling, spontaneous seizures and the consequences of epilepsy: more than a model. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizures and epilepsy. Amsterdam et al.: Elsevier; 2006. p. 395–406.CrossRefGoogle Scholar
  88. 88.
    Ma J, Leung LS. Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus. Behav Brain Res. 2010;206(1):68–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Howland JG, Hannesson DK, Barnes SJ, Phillips AG. Kindling of basolateral amygdala but not ventral hippocampus or perirhinal cortex disrupts sensorimotor gating in rats. Behav Brain Res. 2007;177(1):30–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Ma J, Leung LS. Schizophrenia-like behavioral changes after partial hippocampal kindling. Brain Res. 2004;997(1):111–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Koch M, Ebert U. Deficient sensorimotor gating following seizures in amygdala-kindled rats. Biol Psychiatry. 1998;44(4):290–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Labbate GP, da Silva AV, Barbosa-Silva RC. Effect of severe neonatal seizures on prepulse inhibition and hippocampal volume of rats tested in early adulthood. Neurosci Lett. 2014;568:62–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Jones NC, Martin S, Megatia I, Hakami T, Salzberg MR, Pinault D, et al. A genetic epilepsy rat model displays endophenotypes of psychosis. Neurobiol Dis. 2010;39(1):116–25.PubMedCrossRefGoogle Scholar
  94. 94.
    Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3(5):287–302.PubMedCrossRefGoogle Scholar
  95. 95.
    Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004;3(5):303–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Crawley JN. Chapter 9: Social behaviors. In: Craige CP, editor. What’s wrong with my mouse? Hoboken: Wiley Interscience; 2007. p. 206–24.CrossRefGoogle Scholar
  97. 97.
    Scattoni ML, Gandhy SU, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One. 2008;3(8):e3067.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26(4):607–16.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7(2):152–63.PubMedCrossRefGoogle Scholar
  100. 100.
    Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RL, et al. The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res. 2013;251:25–34.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Teng BL, Nonneman RJ, Agster KL, Nikolova VD, Davis TT, Riddick NV, et al. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders. Neuropharmacology. 2013;72:187–96.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Bernardet M, Crusio WE. Fmr1 KO mice as a possible model of autistic features. Sci World J. 2006;6:1164–76.CrossRefGoogle Scholar
  103. 103.
    Wohr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One. 2011;6(6):e20631.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Pobbe RL, Pearson BL, Defensor EB, Bolivar VJ, Young 3rd WS, Lee HJ, et al. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav. 2012;61(3):436–44.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Roullet FI, Lai JK, Foster JA. In utero exposure to valproic acid and autism – a current review of clinical and animal studies. Neurotoxicol Teratol. 2013;36:47–56.PubMedCrossRefGoogle Scholar
  106. 106.
    Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, Lopez-Aranda M, et al. Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Rep. 2014;3(5):725–34.CrossRefGoogle Scholar
  107. 107.
    Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.PubMedCrossRefGoogle Scholar
  108. 108.
    Li BM, Liu XR, Yi YH, Deng YH, Su T, Zou X, et al. Autism in Dravet syndrome: prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy Behav. 2011;21(3):291–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489(7416):385–90.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Mohn JL, Alexander J, Pirone A, Palka CD, Lee SY, Mebane L, et al. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry. 2014;19(10):1133–42.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Sherr EH. The ARX, story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Op Ped. 2003;15(6):567–71.CrossRefGoogle Scholar
  112. 112.
    Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol. 2013;74(1):11–9.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis. 2010;37(3):604–12.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Rosenblueth A, Wiener N. The role of models in science. Philos Sci. 1945;12(4):316–21.CrossRefGoogle Scholar
  116. 116.
    Dulay MF, Schefft BK, Fargo JD, Privitera MD, Yeh HS. Severity of depressive symptoms, hippocampal sclerosis, auditory memory, and side of seizure focus in temporal lobe epilepsy. Epilepsy Behav. 2004;5(4):522–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Helmstaedter C, Sonntag-Dillender M, Hoppe C, Elger CE. Depressed mood and memory impairment in temporal lobe epilepsy as a function of focus lateralization and localization. Epilepsy Behav. 2004;5(5):696–701.PubMedCrossRefGoogle Scholar
  118. 118.
    Kanner AM, Barry JJ, Gilliam F, Hermann B, Meador KJ. Depressive and anxiety disorders in epilepsy: do they differ in their potential to worsen common antiepileptic drug-related adverse events? Epilepsia. 2012;53(6):1104–8.PubMedCrossRefGoogle Scholar
  119. 119.
    McIntosh D, Kutcher S, Binder C, Levitt A, Fallu A, Rosenbluth M. Adult ADHD and comorbid depression: a consensus-derived diagnostic algorithm for ADHD. Neuropsychiatr Dis Treat. 2009;5:137–50.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Daviss WB. A review of co-morbid depression in pediatric ADHD: etiology, phenomenology, and treatment. J Child Adolesc Psychopharmacol. 2008;18(6):565–71.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Neurology Division, Department of PediatricsDavid Geffen School of Medicine, University of California Los AngelesLos AngelesUSA

Personalised recommendations