Skip to main content

Coagulopathy and Inflammation: An Overview of Blast Effects

  • Chapter
  • First Online:
Blast Injury Science and Engineering

Abstract

Blast injury results in a complex pattern of tissue injury, inflammation and coagulopathy, presenting great challenges in clinical management. The pathophysiology of blast-associated inflammation and coagulopathy is only partially understood and there remains a great deal of uncertainty over management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elsayed NM, Gorbunov NV, Kagan VE. A proposed biochemical mechanism involving hemoglobin for blast overpressure-induced injury. Toxicology. 1997;121(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  2. Gorbunov NV, Asher LV, Ayyagari V, Atkins JL. Inflammatory leukocytes and iron turnover in experimental hemorrhagic lung trauma. Exp Mol Pathol. 2006;80(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  3. Gorbunov NV, Elsayed NM, Kisin ER, Kozlov AV, Kagan VE. Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation. Am J Physiol. 1997;272(2 Pt 1):L320–34.

    CAS  PubMed  Google Scholar 

  4. Gorbunov NV, McFaul SJ, Van Albert S, Morrissette C, Zaucha GM, Nath J. Assessment of inflammatory response and sequestration of blood iron transferrin complexes in a rat model of lung injury resulting from exposure to low-frequency shock waves. Crit Care Med. 2004;32(4):1028–34.

    Article  PubMed  Google Scholar 

  5. Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol. 1993;74(2):151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorbunov NV, McFaul SJ, Januszkiewicz A, Atkins JL. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma. Int J Immunopathol Pharmacol. 2005;18(3):547–56.

    CAS  PubMed  Google Scholar 

  7. Ning JL, Mo LW, Lu KZ, Lai XN, Wang ZG, Ma D. Lung injury following lower extremity blast trauma in rats. J Trauma Acute Care Surg. 2012;73(6):1537–44.

    Article  PubMed  Google Scholar 

  8. Volpin G, Cohen M, Assaf M, Meir T, Katz R, Pollack S. Cytokine levels (IL-4, IL-6, IL-8 and TGFbeta) as potential biomarkers of systemic inflammatory response in trauma patients. Int Orthop. 2014;38(6):1303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cooper GJ, Maynard RL, Cross NL, Hill JF. Casualties from terrorist bombings. J Trauma. 1983;23(11):955–67.

    Article  CAS  PubMed  Google Scholar 

  10. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709.

    Article  PubMed  Google Scholar 

  11. Doran CM, Doran CA, Woolley T, Carter A, Male K, Midwinter MJ, et al. Targeted resuscitation improves coagulation and outcome. J Trauma Acute Care Surg. 2012;72(4):835–43.

    Article  CAS  PubMed  Google Scholar 

  12. Kirkman E, Watts S, Cooper G. Blast injury research models. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):144–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prasad KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res. 2015;1599C:103–14.

    Article  Google Scholar 

  14. Risdall JE, Carter AJ, Kirkman E, Watts SA, Taylor C, Menon DK. Endothelial activation and chemoattractant expression are early processes in isolated blast brain injury. Neuromolecular Med. 2014;16(3):606–19.

    Article  CAS  PubMed  Google Scholar 

  15. Shetty AK, Mishra V, Kodali M, Hattiangady B. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci. 2014;8:232.

    PubMed  PubMed Central  Google Scholar 

  16. Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayir H, Jackson EK, et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma. 2013;30(11):920–37.

    Article  PubMed  Google Scholar 

  17. Ahmed FA, Kamnaksh A, Kovesdi E, Long JB, Agoston DV. Long-term consequences of single and multiple mild blast exposure on select physiological parameters and blood-based biomarkers. Electrophoresis. 2013;34(15):2229–33.

    Article  CAS  PubMed  Google Scholar 

  18. Cernak I. The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neurol. 2010;1:151.

    PubMed  PubMed Central  Google Scholar 

  19. Simard JM, Pampori A, Keledjian K, Tosun C, Schwartzbauer G, Ivanova S, et al. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain. J Neurotrauma. 2014;31(14):1292–304.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Yang Y, Tang H, Sun W, Xiong X, Smerin D, et al. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits. Neurochem Res. 2014;39(5):950–60.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Chavko M, Slack JL, Liu B, McCarron RM, Ross JD, et al. Protective effects of decay-accelerating factor on blast-induced neurotrauma in rats. Acta Neuropathol Commun. 2013;1(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reiner A, Heldt SA, Presley CS, Guley NH, Elberger AJ, Deng Y, et al. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int J Mol Sci. 2015;16(1):758–87.

    Article  CAS  PubMed Central  Google Scholar 

  23. Valiyaveettil M, Alamneh YA, Miller SA, Hammamieh R, Arun P, Wang Y, et al. Modulation of cholinergic pathways and inflammatory mediators in blast-induced traumatic brain injury. Chem Biol Interact. 2013;203(1):371–5.

    Article  CAS  PubMed  Google Scholar 

  24. Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock. 2014;41 Suppl 1:21–5.

    Article  CAS  PubMed  Google Scholar 

  25. Asehnoune K, Faraoni D, Brohi K. What’s new in management of traumatic coagulopathy? Intensive Care Med. 2014;40(11):1727–30.

    Article  PubMed  Google Scholar 

  26. Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia. 2015;70 Suppl 1:96–101, e32–4.

    Article  CAS  PubMed  Google Scholar 

  27. Harrisson S, Watts S, Jacobs N, Granville-Chapman J, Doran C, Anderson S, et al. Clotting is enhanced after blast injury. Br J Surg. 2008;95(S3):3.

    Google Scholar 

  28. Prat NJ, Montgomery R, Cap AP, Dubick MA, Sarron JC, Destombe C, et al. Comprehensive evaluation of coagulation in Swine subjected to isolated primary blast injury. Shock. 2015;43:598–603.

    Article  PubMed  Google Scholar 

  29. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.

    Google Scholar 

  30. Tang BM, Craig JC, Eslick GD, Seppelt I, McLean AS. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594–603.

    Article  CAS  PubMed  Google Scholar 

  31. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  32. Grover V, Handy JM. The role of steroids in treating septic shock. Anaesthesia. 2012;67(2):103–6.

    Article  CAS  PubMed  Google Scholar 

  33. Chavko M, Adeeb S, Ahlers ST, McCarron RM. Attenuation of pulmonary inflammation after exposure to blast overpressure by N-acetylcysteine amide. Shock. 2009;32(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  34. Hodgetts TJ, Mahoney PF, Kirkman E. Damage control resuscitation. J R Army Med Corps. 2007;153(4):299–300.

    Article  CAS  PubMed  Google Scholar 

  35. Kehoe A, Jones A, Marcus S, Nordmann G, Pope C, Reavley P, et al. Current controversies in military pre-hospital critical care. J R Army Med Corps. 2011;157(3 Suppl 1):S305–9.

    Article  CAS  PubMed  Google Scholar 

  36. Morrison JJ, Oh J, DuBose JJ, O’Reilly DJ, Russell RJ, Blackbourne LH, et al. En-route care capability from point of injury impacts mortality after severe wartime injury. Ann Surg. 2013;257(2):330–4.

    Article  PubMed  Google Scholar 

  37. Mercer SJ, Park CL, Tarmey NT. Human factors in complex trauma. BJA Education 2015;15(5):231–236.

    Google Scholar 

  38. Mercer SJ, Tarmey NT, Woolley T, Wood PL, Mahoney PF. Haemorrhage and coagulopathy in the defence medical services. Anaesthesia. 2013;68(Suppl1):49–60.

    Article  PubMed  Google Scholar 

  39. Excellence NIfC. Pre-hospital initiation of fluid replacement in trauma. Technology appraisal guidance. London: NICE; 2004.

    Google Scholar 

  40. Bickell WH, Wall Jr MJ, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    Article  CAS  PubMed  Google Scholar 

  41. Garner J, Watts S, Parry C, Bird J, Cooper G, Kirkman E. Prolonged permissive hypotensive resuscitation is associated with poor outcome in primary blast injury with controlled hemorrhage. Ann Surg. 2010;251(6):1131–9.

    Article  PubMed  Google Scholar 

  42. Surgeons ACo, editor. Advanced trauma life support for doctors, 2 ed. American College of Surgeons, Chicago; 1997.

    Google Scholar 

  43. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    Article  PubMed  Google Scholar 

  44. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.

    PubMed  Google Scholar 

  45. Kashuk JL, Moore EE, Johnson JL, Haenel J, Wilson M, Moore JB, et al. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma: packed red blood cells the answer? J Trauma. 2008;65(2):261–70.

    Article  PubMed  Google Scholar 

  46. Triulzi DJ. Transfusion-related acute lung injury: current concepts for the clinician. Anesth Analg. 2009;108(3):770–6.

    Article  PubMed  Google Scholar 

  47. Chan CM, Shorr AF, Perkins JG. Factors associated with acute lung injury in combat casualties receiving massive blood transfusions: a retrospective analysis. J Crit Care. 2012;27(4):419 e7–14.

    Article  PubMed  Google Scholar 

  48. Starkey K, Keene D, Morrison JJ, Doughty H, Midwinter MJ, Woolley T, et al. Impact of high ratios of plasma-to-red cell concentrate on the incidence of acute respiratory distress syndrome in UK transfused combat casualties. Shock. 2013;40(1):15–20.

    Article  PubMed  Google Scholar 

  49. Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E. Utility of interim ROTEM((R)) values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2012;44:593–599.

    Google Scholar 

  50. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  PubMed  Google Scholar 

  51. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hauser CJ, Boffard K, Dutton R, Bernard GR, Croce MA, Holcomb JB, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma Acute Care Surg. 2010;69(3):489–500.

    Article  CAS  Google Scholar 

  53. Plurad DS, Talving P, Lam L, Inaba K, Green D, Demetriades D. Early vasopressor use in critical injury is associated with mortality independent from volume status. J Trauma. 2011;71(3):565–70; discussion 70–2.

    Article  PubMed  Google Scholar 

  54. Kirkman E, Watts S. Haemodynamic changes in trauma. Br J Anaesth. 2014;113(2):266–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Tarmey FRCA, DICM, DipIMC, RCS(Ed) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tarmey, N.T., Kirkman, E. (2016). Coagulopathy and Inflammation: An Overview of Blast Effects. In: Bull, A., Clasper, J., Mahoney, P. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21867-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21867-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21866-3

  • Online ISBN: 978-3-319-21867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics