Skip to main content

Exploring the Neurophysiological Correlates of Loss and Recovery of Consciousness: Perturbational Complexity

  • Chapter
Brain Function and Responsiveness in Disorders of Consciousness

Abstract

Although assessing a subject’s capacity for consciousness is commonly based on an input-output paradigm, clinical and physiological evidence advocate the development of brain-based metrics that are independent on both sensory inputs and motor outputs. As an attempt in this direction, we devised an empirical measure of complexity derived from the electroencephalographic (EEG) response to a direct cortical perturbation with transcranial magnetic stimulation (TMS), the perturbational complexity index (PCI). Based on theoretical postulates, PCI gauges the conjoint presence of integration and information in the human brain, independently of sensory inputs and motor outputs. In a preliminary series of experiments, PCI was tested on TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, NREM sleep, and different levels of sedation induced by different anesthetic agents, as well as in patients who emerged from coma and attained a stable diagnosis. These experiments show that PCI allows a reliable assessment of the level of consciousness at the single-subject level and prompt further validation toward the development of a diagnostic test. In parallel, elucidating the mechanisms by which brain complexity collapses and recovers following brain injury may provide novel insight on the physiopathology and the treatment of disorders of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernandez-Espejo D, Pickard JD et al (2011) Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378(9809):2088–2094. doi:10.1016/S0140-6736(11)61224-5

    Article  PubMed  Google Scholar 

  2. Naci L, Cusack R, Anello M, Owen AM (2014) A common neural code for similar conscious experiences in different individuals. Proc Natl Acad Sci U S A 111(39):14277–14282. doi:10.1073/pnas.1407007111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  CAS  PubMed  Google Scholar 

  4. Bardin JC, Fins JJ, Katz DI, Hersh J, Heier LA, Tabelow K et al (2011) Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134(Pt 3):769–782. doi:10.1093/brain/awr005

    Article  PubMed Central  PubMed  Google Scholar 

  5. Koulack D (1969) Effects of somatosensory stimulation on dream content. Arch Gen Psychiatry 20(6):718–725

    Article  CAS  PubMed  Google Scholar 

  6. Oizumi M, Albantakis L, Tononi G (2014) From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput Biol 10(5):e1003588. doi:10.1371/journal.pcbi.1003588

    Google Scholar 

  7. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70(2):200–227. doi:10.1016/j.neuron.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  8. Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci 25:221–250. doi:10.1146/annurev.neuro.25.112701.142846

    Article  CAS  PubMed  Google Scholar 

  9. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9(12):556–559. doi:10.1016/j.tics.2005.10.010

    Article  PubMed  Google Scholar 

  10. Tononi G, Koch C (2008) The neural correlates of consciousness: an update. Ann N Y Acad Sci 1124:239–261. doi:10.1196/annals.1440.004

    Article  PubMed  Google Scholar 

  11. Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci U S A 103(28):10799–10804. doi:10.1073/pnas.0604347103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125. doi:10.1111/j.1749-6632.2010.05888.x

    Article  PubMed  Google Scholar 

  13. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42. doi:10.1186/1471-2202-5-42

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282(5395):1846–1851

    Article  CAS  PubMed  Google Scholar 

  15. Boly M (2011) Measuring the fading consciousness in the human brain. Curr Opin Neurol 24(4):394–400. doi:10.1097/WCO.0b013e328347da94

    Article  PubMed  Google Scholar 

  16. Seth AK, Dienes Z, Cleeremans A, Overgaard M, Pessoa L (2008) Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cogn Sci 12(8):314–321

    Article  PubMed Central  PubMed  Google Scholar 

  17. G. Tononi, O. Sporns, G. M. Edelman, A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033–5037 (1994)

    Google Scholar 

  18. G. Tononi, C. Koch, The neural correlates of consciousness: An update. Ann. N. Y. Acad. Sci. 1124, 239–261 (2008)

    Google Scholar 

  19. A. K. Seth, A. B. Barrett, L. Barnett, Causal density and integrated information as measures of conscious level. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3748–3767 (2011)

    Google Scholar 

  20. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25

    Article  PubMed  Google Scholar 

  21. Kotchoubey B (2005) Apallic syndrome is not apallic: is vegetative state vegetative? Neuropsychol Rehabil 15(3–4):333–356

    Article  PubMed  Google Scholar 

  22. Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras F, Gramfort A et al (2014) Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137(Pt 8):2258–2270. doi:10.1093/brain/awu141

    Article  PubMed Central  PubMed  Google Scholar 

  23. Johnson, R. W. (1987). Relative-entropy minimization with uncertain constraints: theory and application to spectrum analysis (pp. 57-73). Springer Netherlands.

    Google Scholar 

  24. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345

    Article  CAS  PubMed  Google Scholar 

  25. Massimini M, Boly M, Casali A, Rosanova M, Tononi G (2009) A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res 177:201–214. doi:10.1016/S0079-6123(09)17714-2

    Article  PubMed  Google Scholar 

  26. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8(16):3537–3540

    Article  CAS  PubMed  Google Scholar 

  27. Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR et al (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5(198):198ra10. doi:10.1126/scitranslmed.300

    Article  Google Scholar 

  28. Giacino JT, Kalmar K, Whyte J (2004) The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85(12):2020–2029

    Article  PubMed  Google Scholar 

  29. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232. doi:10.1126/science.1117256

    Article  CAS  PubMed  Google Scholar 

  30. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29(24):7679–7685. doi:10.1523/JNEUROSCI.0445-09.2009

    Article  CAS  PubMed  Google Scholar 

  31. Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M et al (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A 104(20):8496–8501. doi:10.1073/pnas.0702495104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G et al (2010) Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A 107(6):2681–2686. doi:10.1073/pnas.0913008107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rosanova M, Gosseries O, Casarotto S, Boly M, Casali AG, Bruno MA et al (2012) Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135(Pt 4):1308–1320. doi:10.1093/brain/awr340

    Article  PubMed Central  PubMed  Google Scholar 

  34. Massimini M, Ferrarelli F, Murphy M, Huber R, Riedner B, Casarotto S et al (2010) Cortical reactivity and effective connectivity during REM sleep in humans. Cogn Neurosci 1(3):176–183. doi:10.1080/17588921003731578

    Article  PubMed Central  PubMed  Google Scholar 

  35. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13(8):3252–3265

    CAS  PubMed  Google Scholar 

  36. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725. doi:10.1152/jn.00845.2002

    Article  PubMed  Google Scholar 

  37. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027–1034. doi:10.1038/79848

    Article  CAS  PubMed  Google Scholar 

  38. Pigorini A, Sarasso S, Proserpio P, Szymanski C, Arnulfo G, Casarotto S et al (2015) Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage 112:105–113. doi:10.1016/j.neuroimage.2015.02.056

    Article  PubMed  Google Scholar 

  39. Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C et al (2009) The human K-complex represents an isolated cortical down-state. Science 324(5930):1084–1087. doi:10.1126/science.1169626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Valderrama M, Crepon B, Botella-Soler V, Martinerie J, Hasboun D, Alvarado-Rojas C et al (2012) Human gamma oscillations during slow wave sleep. PLoS One 7(4), e33477. doi:10.1371/journal.pone.0033477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sinkkonen J, Tiitinen H, Naatanen R (1995) Gabor filters: an informative way for analysing event-related brain activity. J Neurosci Methods 56(1):99–104

    Article  CAS  PubMed  Google Scholar 

  42. Stender J, Gosseries O, Bruno MA, Charland-Verville V, Vanhaudenhuyse A, Demertzi A et al (2014) Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 384(9942):514–522. doi:10.1016/S0140-6736(14)60042-8

    Article  PubMed  Google Scholar 

  43. McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3(5):387–398

    Article  CAS  PubMed  Google Scholar 

  44. Englot DJ, Yang L, Hamid H, Danielson N, Bai X, Marfeo A et al (2010) Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain 133(Pt 12):3764–3777. doi:10.1093/brain/awq316

    Article  PubMed Central  PubMed  Google Scholar 

  45. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10(12):1185–1199

    Article  CAS  PubMed  Google Scholar 

  46. Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409. doi:10.1002/ana.10848

    Article  PubMed  Google Scholar 

  47. Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33(1):1–9. doi:10.1016/j.tins.2009.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Brefel-Courbon C, Payoux P, Ory F, Sommet A, Slaoui T, Raboyeau G et al (2007) Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann Neurol 62(1):102–105. doi:10.1002/ana.21110

    Article  CAS  PubMed  Google Scholar 

  49. Whyte J, Myers R (2009) Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil 88(5):410–418. doi:10.1097/PHM.0b013e3181a0e3a0

    Article  PubMed  Google Scholar 

  50. Schiff ND, Nauvel T, Victor JD (2014) Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol 25:7–14. doi:10.1016/j.conb.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  51. Gosseries O, Di H, Laureys S, Boly M (2014) Measuring consciousness in severely damaged brains. Annu Rev Neurosci 37:457–478. doi:10.1146/annurev-neuro-062012-170339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casarotto, S., Rosanova, M., Gosseries, O., Boly, M., Massimini, M., Sarasso, S. (2016). Exploring the Neurophysiological Correlates of Loss and Recovery of Consciousness: Perturbational Complexity. In: Monti, M., Sannita, W. (eds) Brain Function and Responsiveness in Disorders of Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-21425-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21425-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21424-5

  • Online ISBN: 978-3-319-21425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics