Skip to main content

Isoperimetric Inequalities for Extremal Sobolev Functions

  • Conference paper
Extended Abstracts Fall 2013

Part of the book series: Trends in Mathematics ((RPCRMB))

  • 540 Accesses

Abstract

Let \(\Omega \subset \mathbf{R}^{n}\) be a bounded domain with boundary of class \(\mathcal{C}^{1}\). One can measure various geometric and physical quantities attached to \(\Omega\), such as volume, perimeter, diameter, in-radius, torsional rigidity, and principal frequency. The first chapter of [16] contains a long list of such interesting quantities, as well as their values for standard shapes such as disks, rectangles, strips, and triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Brasco, On torsional rigidity and principal frequencies: an invitation to the Kohler–Jobin rearrangement technique. ESAIM Control Optim. Calc. Var. (2013). https://hal.archives-ouvertes.fr/hal-00783875

  2. R. Burckel, D. Marshall, D. Minda, P. Poggi-Corradini, T. Ransford, Area, capacity, and diameter versions of Schwarz’s lemma. Conform. Geom. Dyn. 12, 133–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Carroll, J. Ratzkin, Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl. 379, 818–826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Carroll, J. Ratzkin, Two isoperimetric inequalities for the Sobolev constant. Z. Angew. Math. Phys. 63, 855–863 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Carroll, J. Ratzkin, An isoperimetric inequality for extremal Sobolev functions. RIMS Kôkyûroku Bessatsu (to appear)

    Google Scholar 

  6. G. Chiti, A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators. Z. Angew. Math. Phys. 33, 143–148 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Colesanti, Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 194, 105–140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Dai, R. He, H. Hu, Isoperimetric inequalities and sharp estimates for positive solution of sublinear elliptic equations (Preprint, 2010). arXiv:AP/1003.3768

    Google Scholar 

  9. S.E. Graversen, M. Rao, Brownian motion and eigenvalues for the Dirichlet Laplacian. Math. Z. 203, 699–708 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Hersch, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défault et principe de maximum. Z. Angew. Math. Mech. 11, 387–413 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.T. Kohler-Jobin, Sur la première fonction propre d’une membrane: une extension à N dimensions de l’inégalité isopérimétrique de Payne-Rayner. Z. Angew. Math. Phys. 28, 1137–1140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Laugesen, C. Morpurgo, Extremals for eigenvalues of Laplacians under conformal mappings. J. Funct. Anal. 155, 64–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Lindqvist, On non-linear Rayleigh quotients. Potential Anal. 2, 199–218 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. L.E. Payne, M.E. Rayner, An isoperimetric inequality for the first eigenfunction in the fixed membrane problem. Z. Angew. Math. Phys. 23, 13–15 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.E. Payne, M.E. Rayner, Some isoperimetric norm bounds for solutions of the Helmholtz equation. Z. Angew. Math. Phys. 24, 105–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, 1951)

    MATH  Google Scholar 

  17. R. Sperb, Maximum Principles and Their Applications (Academic, New York, 1981)

    MATH  Google Scholar 

  18. P. Topping, The isoperimetric inequality on a surface. Manuscr. Math. 100, 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Ratzkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ratzkin, J., Carroll, T. (2015). Isoperimetric Inequalities for Extremal Sobolev Functions. In: González, M., Yang, P., Gambino, N., Kock, J. (eds) Extended Abstracts Fall 2013. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-21284-5_13

Download citation

Publish with us

Policies and ethics