Skip to main content

Constructing and Employing Tree Alignment Graphs for Phylogenetic Synthesis

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9199))

Included in the following conference series:

Abstract

Tree alignment graphs (TAGs) provide an intuitive data structure for storing phylogenetic trees that exhibits the relationships of the individual input trees and can potentially account for nested taxonomic relationships. This paper provides a theoretical foundation for the use of TAGs in phylogenetics. We provide a formal definition of TAG that — unlike previous definition — does not depend on the order in which input trees are provided. In the consensus case, when all input trees have the same leaf labels, we describe algorithms for constructing majority-rule and strict consensus trees using the TAG. When the input trees do not have identical sets of leaf labels, we describe how to determine if the input trees are compatible and, if they are compatible, to construct a supertree that contains the input trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    S. A. Smith, J. W. Brown, and C. E. Hinchliff (Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor), personal communication.

References

  1. Baum, D., Smith, S.: Tree Thinking: An Introduction to Phylogenetic, 1st edn. Roberts and Company, Englewood (2012)

    Google Scholar 

  2. Goldman, N., Yang, Z.: Introduction. statistical and computational challenges in molecular phylogenetics and evolution. Philos. Trans. Royal Soc. B Biol. Sci. 363(1512), 3889–3892 (2008)

    Article  Google Scholar 

  3. McMahon, M., Deepak, A., Fernández-Baca, D., Boss, D., Sanderson, M.: STBase: one million species trees for comparative biology. PLoS One 10(2), e0117987 (2015)

    Article  Google Scholar 

  4. Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T., Glenn, T.C.: Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61(5), 716–726 (2012)

    Article  Google Scholar 

  5. Lemmon, A.R., Emme, S.A., Lemmon, E.M.: Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61(5), 727–744 (2012)

    Article  Google Scholar 

  6. McCormack, J.E., Faircloth, B.C., Crawford, N.G., Gowaty, P.A., Brumfield, R.T., Glenn, T.C.: Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 22, 746–754 (2012)

    Article  Google Scholar 

  7. Smith, S.A., Brown, J.W., Hinchliff, C.E.: Analyzing and synthesizing phylogenies using tree alignment graphs. PLoS Comput. Biol. 9(9), e1003223 (2013)

    Article  MathSciNet  Google Scholar 

  8. Berry, V., Bininda-Emonds, O., Semple, C.: Amalgamating source trees with different taxonomic levels. Syst. Biol. 62(2), 231–249 (2013)

    Article  Google Scholar 

  9. Berry, V., Semple, C.: Fast computation of supertrees for compatible phylogenies with nested taxa. Syst. Biol. 55(2), 270–288 (2006)

    Article  Google Scholar 

  10. Daniel, P., Semple, C.: A class of general supertree methods for nested taxa. SIAM J. Discrete Methods 19, 463–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smith, S.A., Cranston, K.A., Allman, J.F., Brown, J.W., Burleigh, G., Chaudhary, R., Coghill, L., Crandall, K.A., Deng, J., Drew, B., Gazis, R., Gude, K., Hibbett, D.S., Hinchliff, C., Katz, L.A., IV, H.D.L. , McTavish, E.J., Owen, C.L., Ree, R., Rees, J.A., Soltis, D.E., Williams, T.: Synthesis of phylogeny and taxonomy into a comprehensive tree of life. (Under review)

    Google Scholar 

  12. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  14. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12, 101–112 (1995)

    Article  MATH  Google Scholar 

  15. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Semple, C., Steel, M.A.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Page, R.D.M.: Modified Mincut Supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–551. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Diestel, R.: Graph Theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  19. Cormen, T.H., Leiserson, C.E., Rivest, R.E.: Introduction to Algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  20. Amenta, N., Clarke, F., St. John, K.: A linear-time majority tree algorithm. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 216–227. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chaudhary, R., Fernández-Baca, D., Burleigh, J.G. (2015). Constructing and Employing Tree Alignment Graphs for Phylogenetic Synthesis. In: Dediu, AH., Hernández-Quiroz, F., Martín-Vide, C., Rosenblueth, D. (eds) Algorithms for Computational Biology. AlCoB 2015. Lecture Notes in Computer Science(), vol 9199. Springer, Cham. https://doi.org/10.1007/978-3-319-21233-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21233-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21232-6

  • Online ISBN: 978-3-319-21233-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics