Advertisement

Workload Is Multidimensional, Not Unitary: What Now?

  • Gerald Matthews
  • Lauren Reinerman-Jones
  • Ryan Wohleber
  • Jinchao Lin
  • Joe Mercado
  • Julian AbichIV
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

It is commonly assumed that workload is a unitary construct, but recent data suggest that there are multiple subjective and objective facets of workload that are only weakly intercorrelated. This article reviews the implications of treating workload as multivariate. Examples from several simulated task environments show that high subjective workload is compatible with a variety of patterns of multivariate psychophysiological response. Better understanding of the cognitive neuroscience of the different components of workload, including stress components, is required. At a practical level, neither subjective workload measures nor single physiological responses are adequate for evaluating task demands, building predictive models of human performance, and driving augmented cognition applications. Multivariate algorithms that accommodate the variability of cognitive and affective responses to demanding tasks are needed.

Keywords

Workload Task demands Psychophysiology Electroencephalogram (EEG) Electrocardiogram (ECG) Stress Performance Individual differences 

Notes

Acknowledgements

This work was in part supported by the Air Force Office of Scientific Research (AFOSR) (FA 9550-13-1-0016) and the US Army Research Laboratory (ARL) (W91CRB-08-D-0015). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of AFOSR, ARL or the US Government.

References

  1. 1.
    Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50, 449–455 (2008)CrossRefGoogle Scholar
  2. 2.
    Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58, 1–17 (2014). (advance online publication)CrossRefGoogle Scholar
  3. 3.
    Colle, H.A., Reid, G.B.: Context effects in subjective mental workload ratings. Hum. Factors 40, 591–600 (1998)CrossRefGoogle Scholar
  4. 4.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–184. North-Holland, Amsterdam (1988)CrossRefGoogle Scholar
  5. 5.
    Yeh, Y.Y., Wickens, C.D.: Dissociation of performance and subjective measures of workload. Hum. Factors 30, 111–120 (1988)Google Scholar
  6. 6.
    Boles, D.B., Bursk, J.H., Phillips, J.B., Perdelwitz, J.R.: Predicting dual-task performance with the multiple resources questionnaire (MRQ). Hum. Factors 49, 32–45 (2007)CrossRefGoogle Scholar
  7. 7.
    Finomore, V.S., Shaw, T.H., Warm, J.S., Matthews, G., Boles, D.B.: Viewing the workload of vigilance through the lenses of the NASA-TLX and the MRQ. Hum. Factors 55, 1044–1063 (2013)CrossRefGoogle Scholar
  8. 8.
    Saxby, D.J., Matthews, G., Warm, J.S., Hitchcock, E.M., Neubauer, C.: Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts. J. Exp. Psychol. Appl. 19, 287–300 (2013)CrossRefGoogle Scholar
  9. 9.
    Hockey, G.R.J.: Compensatory control in the regulation of human performance under stress and high workload: a cognitive-energetical framework. Biol. Psychol. 45, 73–93 (1997)CrossRefGoogle Scholar
  10. 10.
    Young, M.S., Stanton, N.A.: Malleable attentional resources theory: a new explanation for the effects of mental underload on performance. Hum. Factors 44, 365–375 (2002)CrossRefGoogle Scholar
  11. 11.
    Matthews, G., Davies, D.R., Westerman, S.J., Stammers, R.B.: Human Performance: Cognition, Stress and Individual Differences. Psychology Press, London (2000)Google Scholar
  12. 12.
    Brookhuis, K.A., de Waard, D.: Monitoring drivers’ mental workload in driving simulators using physiological measures. Accid. Anal. Prev. 42, 898–903 (2010)CrossRefGoogle Scholar
  13. 13.
    O’Donnell, R.D., Eggemeier, F.T.: Workload assessment methodology. In: Boff, K.R., Thomas, J.P. (eds.) Handbook of Perception and Human Performance. Cognitive Processes and Performance, vol. 2, 2nd edn, pp. 1–49. Wiley, Oxford (1986)Google Scholar
  14. 14.
    Matthews, G., Reinerman-Jones, L.E., Barber, D.J., Abich, J.: The psychometrics of mental workload multiple measures are sensitive but divergent. Hum. Factors 57, 125–143 (2014)CrossRefGoogle Scholar
  15. 15.
    Reinerman-Jones, L.E., Matthews, G., Barber, D.J., Abich, J.: Psychophysiological metrics for workload are demand-sensitive but multifactorial. Proceed. Hum. Factors Ergon. Soc. Annu. Meet. 58, 974–978 (2014)CrossRefGoogle Scholar
  16. 16.
    Reinerman-Jones, L., Guznov, S., Mercado, J., D’Agostino, A.: Developing methodology for experimentation using a nuclear power plant simulator. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Foundations of Augmented Cognition, pp. 181–188. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Loehlin, J.C.: Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis. Lawrence Erlbaum, Mahwah (2004)Google Scholar
  18. 18.
    Stephens, C.L., Christie, I.C., Friedman, B.H.: Autonomic specificity of basic emotions: evidence from pattern classification and cluster analysis. Biol. Psychol. 84, 463–473 (2010)CrossRefGoogle Scholar
  19. 19.
    Baldwin, C.L., Penaranda, B.N.: Adaptive training using an artificial neural network and EEG metrics for within-and cross-task workload classification. NeuroImage 59, 48–56 (2012)CrossRefGoogle Scholar
  20. 20.
    Matthews, G., Warm, J.S., Shaw, T.H., Finomore, V.S.: Predicting battlefield vigilance: a multivariate approach to assessment of attentional resources. Ergonomics 57, 856–875 (2014)CrossRefGoogle Scholar
  21. 21.
    Langner, R., Eickhoff, S.B.: Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol. Bull. 139, 870–900 (2013)CrossRefGoogle Scholar
  22. 22.
    Vidulich, M.A., Tsang, P.S.: Mental workload and situation awareness. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, 4th edn, pp. 243–273. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  23. 23.
    Mercado, J.E.: Assessing the effectiveness of workload measures in the nuclear domain. Doctoral dissertation, University of Central Florida (2014)Google Scholar
  24. 24.
    Matthews, G., Warm, J.S., Reinerman, L.E., Langheim, L., Washburn, D.A., Tripp, L.: Task engagement, cerebral blood flow velocity, and diagnostic monitoring for sustained attention. J. Exp. Psychol. Appl. 16, 187–203 (2010)CrossRefGoogle Scholar
  25. 25.
    Stroobant, N., Vingerhoets, G.: Transcranial doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: a review. Neuropsychol. Rev. 10, 213–231 (2000)CrossRefGoogle Scholar
  26. 26.
    Wohleber, R.W., Matthews, G., Reinerman-Jones, L.E., Sollins, B., Panganiban, A.R., Scribner, D.R.: Manuscript in preparation (2015)Google Scholar
  27. 27.
    Lin, J., Matthews, G., Wohleber, R., Calhoun, G., Funke, G.: Manuscript in preparation (2015)Google Scholar
  28. 28.
    Matthews, G., Szalma, J., Panganiban, A.R., Neubauer, C., Warm, J.S.: Profiling task stress with the Dundee stress state questionnaire. In: Cavalcanti, L., Azevedo, S. (eds.) Psychology of Stress: New Research, pp. 49–91. Nova Science, Hauppage (2013)Google Scholar
  29. 29.
    Mulder, L.J.M., De Waard, D., Brookhuis, K.A.: Estimating mental effort using heart rate and heart rate variability. In: Stanton, N.A., Hedge, A., Brookhuis, K., Salas, E., Hendrick, H.W. (eds.) Handbook of Human Factors and Ergonomics Methods, pp. 201–210. CRC Press, Boca Raton (2004)Google Scholar
  30. 30.
    Thayer, J.F., Åhs, F., Fredrikson, M., Sollers, J.J., Wager, T.D.: A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012)CrossRefGoogle Scholar
  31. 31.
    Parasuraman, R., Wickens, C.D.: Humans: still vital after all these years of automation. Hum. Factors 50, 511–520 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gerald Matthews
    • 1
  • Lauren Reinerman-Jones
    • 1
  • Ryan Wohleber
    • 1
  • Jinchao Lin
    • 1
  • Joe Mercado
    • 1
  • Julian AbichIV
    • 1
  1. 1.Institute for Simulation and Training (IST)University of Central Florida (UCF)OrlandoUSA

Personalised recommendations