Skip to main content

Skeletal Dysplasias

  • Chapter
  • First Online:
Pediatric Orthopedic Deformities, Volume 1

Abstract

Skeletal Dysplasias discusses these disorders concentrating on clinical and radiographic descriptions, molecular abnormalities, histopathology, lethal variants, orthopedic deformities by region and by specific disease entities, and orthopedic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parrot J. Sur la malformation achondroplastique et le Dieu Ptah. Bull Soc Anthrop. 1878;1:296–308.

    Google Scholar 

  2. Beighton P, Giedion ZA, Gorlin R, et al. International classification of osteochondrodysplasias. International working group on constitutional diseases of bone. Am J Med Genet. 1992;44(2):223–9.

    Article  PubMed  CAS  Google Scholar 

  3. Rimoin DL. International nomenclature and classification of the osteochondrodysplasias (1997). Am J Med Genet. 1998;79:376–82.

    Article  Google Scholar 

  4. Hall CM. International nosology and classification of constitutional disorders of bone (2001). Am J Med Genet 2002;113(1):65–77.

    Google Scholar 

  5. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A. 2007;143(1):1–18.

    Article  Google Scholar 

  6. Warman ML, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155(5):943–968.

    Google Scholar 

  7. Kuivaniemi H, Tromp G, Prockop DJ. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991;5(7):2052–60.

    PubMed  CAS  Google Scholar 

  8. Bailey JA 2nd. Disproprtionate short stature. diagnosis and management. Philadelphia: WB Saunders; 1973.

    Google Scholar 

  9. Rubin P. Dynamic classifications of bone dysplasias. Chicago: Yearbook Medical Publishers; 1964.

    Google Scholar 

  10. Jansen M. Dissociation of bone growth Robert Jones Birthday Volume. London: Humphrey Milford; 1928.

    Google Scholar 

  11. Brailsford JF. The radiology of bones and joints. 4th edn. Londond, J and A Churchill; 1948.

    Google Scholar 

  12. Fairbank T. An Atlas of general affections of the skeleton. Edinburgh: E&S Livingstone; 1951.

    Google Scholar 

  13. Rimoin DL, Cohn D, Krakow D, Wilcox W, Lachman RS, Alanay Y. The skeletal dysplasias: clinical-molecular correlations. Ann N Y Acad Sci. 2007;1117:302–9.

    Article  PubMed  Google Scholar 

  14. Cohen M Jr. Some chondrodysplasias with short limbs: molecular perspectives. Am J Med Genet. 2002;112:304–13.

    Article  PubMed  Google Scholar 

  15. Cohen M Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet Part A. 2006;140A:2646–706.

    Article  CAS  Google Scholar 

  16. Goldberg MJ. The dysmorphic child: an orthopedic perspective. New York: Raven Press; 1987.

    Google Scholar 

  17. Jones KL, Jones MC, del Campo M. Smith’s Recognizable Patterns of Human Malformation. 7th ed. Elsevier, Philadelphia; 2013.

    Google Scholar 

  18. Wynne-Davies R, Gormley J. The prevalence of skeletal dysplasias. An estimate of their minimum frequency and the number of patients requiring orthopaedic care. J Bone Joint Surg Br. 1985;67(1):133–7.

    PubMed  CAS  Google Scholar 

  19. Beighton P. Osteochondrodysplasias in South Africa. Am J Med Genet. 1996;63(1):7–11.

    Article  PubMed  CAS  Google Scholar 

  20. Vaara P, Peltonen J, Poussa M, et al. Development of the hip in diastrophic dysplasia. J Bone Joint Surg Br. 1998;80(2):315–20.

    Article  PubMed  CAS  Google Scholar 

  21. Schramm T, Gloning KP, Minderer S, et al. Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol. 2009;34(2):160–70.

    Article  PubMed  CAS  Google Scholar 

  22. Sillence DO, Rimoin DL, Lachman R. Neonatal dwarfism. Pediatr Clin NA. 1978;25:453–83.

    CAS  Google Scholar 

  23. Bailey JA 2nd. Forms of dwarfism recognizable at birth. Clin Orthop Relat Res. 1971;76:150–9.

    Article  PubMed  Google Scholar 

  24. Romero R, Pilu G, Jeanty P, Ghidini A, Hobbins JC. Prenatal diagnosis of congenital anomalies. Norwalk, CT: Appleton & Lange; 1988.

    Google Scholar 

  25. Elejalde BR, de Elejalde MM. The prenatal growth of the human body determined by the measurement of bones and organs by ultrasonography. Am J Med Genet. 1986;24(4):575–98.

    Article  PubMed  CAS  Google Scholar 

  26. Chitty LS, Altman DG, Henderson A, Campbell S. Charts of fetal size: 4. Femur length. Br J Obstet Gynaecol. 1994;101(2):132–5.

    Article  PubMed  CAS  Google Scholar 

  27. Lessoway VA, Schulzer M, Wittmann BK, Gagnon FA, Wilson RD. Ultrasound fetal biometry charts for a North American Caucasian population. J Clin Ultrasound. 1998;26(9):433–53.

    Article  PubMed  CAS  Google Scholar 

  28. De Biasio P, Prefumo F, Lantieri PB, Venturini PL. Reference values for fetal limb biometry at 10-14 weeks of gestation. Ultrasound Obstet Gynecol. 2002;19(6):588–91.

    Article  PubMed  Google Scholar 

  29. Kurtz AB, Wapner RJ. Ultrasonographic diagnosis of second-trimester skeletal dysplasia: prospective analysis in a high-risk population. J UltrasoundMed. 1983;2(3):99–106.

    CAS  Google Scholar 

  30. Hobbins JC, Bracken MB, Mahoney MJ. Diagnosis of fetal skeletal dysplasias with ultrasound. Am J Obstet Gynecol. 1982;142(3):306–12.

    PubMed  CAS  Google Scholar 

  31. Filly RA, Golbus MS, Carey JC, Hall JG. Short-limited dwarfism: ultrasonographic diagnosis by mensuration of fetal femoral length. Radiology. 1981;138:653–6.

    Article  PubMed  CAS  Google Scholar 

  32. Kurtz AB, Filly RA, Wapner RJ, et al. In utero analysis of heterozygous achondroplasia: variable time of onset as detected by femur length measurements. J Ultrasound Med. 1986;5(3):137–40.

    PubMed  CAS  Google Scholar 

  33. Gordienko I, Grechanina E, Sopko NI, Tarapurova EN, Mikchailets LP. Prenatal diagnosis of osteochondrodysplasias in high risk pregnancy. Am J Med Genet. 1996;63(1):90–7.

    Article  PubMed  Google Scholar 

  34. Parilla BV, Leeth EA, Kambich MP, Chilis P, MacGregor SN. Antenatal detection of skeletal dysplasias. J Ultrasound Med. 2003;22(3):255–258; quiz 259–261.

    Google Scholar 

  35. Witters I, Moerman P, Fryns JP. Skeletal dysplasias: 38 prenatal cases. Genet Couns. 2008;19(3):267–75.

    PubMed  CAS  Google Scholar 

  36. Krakow D, Alanay Y, Rimoin LP, et al. Evaluation of prenatal-onset osteochondrodysplasias by ultrasonography: a retrospective and prospective analysis. Am J Med Genet A. 2008;146A(15):1917–24.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Horton WA, Hall JG, Scott CI, Pyeritz RE, Rimoin DL. Growth curves for height for diastrophic dysplasia, spondyloepiphyseal dysplasia congenita, and pseudoachondroplasia. Am J Dis Child. 1982;136(4):316–9.

    PubMed  CAS  Google Scholar 

  38. Horton WA, Rotter JI, Rimoin DL, Scott CI, Hall JG. Standard growth curves for achondroplasia. J Pediatr. 1978;93(3):435–8.

    Article  PubMed  CAS  Google Scholar 

  39. Scott CI Jr. Dwarfism. Clin Symp. 1988;40(1):1–32.

    PubMed  Google Scholar 

  40. McKusick VA. Heritable disorders of connective tissue. 4th ed. St. Louis: CV Mosby; 1972.

    Google Scholar 

  41. Beighton P. Inherited disorders of the skeleton. 2nd ed. Edinburgh: Churchill Livingston; 1988.

    Google Scholar 

  42. Maroteaux P. Les maladies osseuses De L’Enfant. 3rd ed. Paris: Flammarion; 1995.

    Google Scholar 

  43. Spranger J, Langer L, Wiedemann HR. Bone Dysplasias—an Atlas of constitutional disorders of skeletal development. 1974.

    Google Scholar 

  44. Lorincz AE, Hurst RE, Kolodny EH. The early laboratory diagnosis of mucopolysaccharidoses. Ann Clin Lab Med. 1982;12:258–66.

    CAS  Google Scholar 

  45. Frezal J, LeMerrer M, Chauvet ML. Osteochondrodysplasia, dysostoses, disorders of calcium metabolism, congenital malformations with skeletal involvement mapped on human chromosomes. Pediatr Radiol. 1997;27:366–87.

    Article  PubMed  CAS  Google Scholar 

  46. McKusick VA, Amberger JS, Francomano CA. Progress in medical genetics: map-based gene discovery and the molecular pathology of skeletal dysplasias. Am J Med Genet. 1996;63(1):98–105.

    Article  PubMed  CAS  Google Scholar 

  47. Horton WA, Machado MA, Ellard J, et al. Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis. Proc Natl Acad Sci USA. 1992;89(10):4583–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Anderson IJ, Goldberg RB, Marion RW, Upholt WB, Tsipouras P. Spondyloepiphyseal dysplasia congenita: genetic linkage to type II collagen (COL2AI). Am J Hum Genet. 1990;46(5):896–901.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Lee B, Vissing H, Ramirez F, Rogers D, Rimoin D. Identification of the molecular defect in a family with spondyloepiphyseal dysplasia. Science. 1989;244(4907):978–80.

    Article  PubMed  CAS  Google Scholar 

  50. Newman B, Wallis GA. Skeletal dysplasias caused by a disruption of skeletal patterning and endochondral ossification. Clin Genet. 2003;63:241–51.

    Article  PubMed  CAS  Google Scholar 

  51. Krakow D, Riomoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–41.

    Article  PubMed  Google Scholar 

  52. Rimoin DL. Molecular defects in the chondrodysplasias. Am J Med Genet. 1996;63(1):106–10.

    Article  PubMed  CAS  Google Scholar 

  53. Maroteaux P. Bone dysplasias due to abnormalities in type II collagen. Rev Rhum Engl Ed. 1998;65(4):221–4.

    PubMed  CAS  Google Scholar 

  54. Mundlos S, Olsen BR. Heritable diseases of the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 1997;11(2):125–32.

    PubMed  CAS  Google Scholar 

  55. Mundlos S, Olsen BR. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J. 1997;11(4):227–33.

    PubMed  CAS  Google Scholar 

  56. Superti-Furga A, Bonafe L, Rimion DL. Molecular-pathogenetic classification of genetic disorders of the skeleton. Am J Med Genet. 2001;106:282–93.

    Article  PubMed  CAS  Google Scholar 

  57. Winter RM. Recent molecular advances in dysmorphology. Hum Mol Genet. 1995;4 Spec No:1699–1704.

    Google Scholar 

  58. Spranger J. Bone dysplasia ‘families’. Pathol Immunopathol Res. 1988;7(1–2):76–80.

    Article  PubMed  CAS  Google Scholar 

  59. Cohen MM Jr. Short-limb skeletal dysplasias and craniosynostosis: what do they have in common? Pediatr Radiol. 1997;27(5):442–6.

    Article  PubMed  Google Scholar 

  60. Muenke M, Schell U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet. 1995;11(8):308–13.

    Article  PubMed  CAS  Google Scholar 

  61. Webster MK, Donoghue DJ. FGFR activation in skeletal disorders: too much of a good thing. Trends Genet. 1997;13(5):178–82.

    Article  PubMed  CAS  Google Scholar 

  62. Tavormina PL, Shiang R, Thompson LM, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  63. Bellus GA, Hefferon TW, Ortiz de Luna RI, et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet. 1995;56(2):368–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371(6494):252–4.

    Article  PubMed  CAS  Google Scholar 

  65. Shiang R, Thompson LM, Zhu YZ, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78(2):335–42.

    Article  PubMed  CAS  Google Scholar 

  66. Horton WA, Machado MA, Chou JW, Campbell D. Achondrogenesis type II, abnormalities of extracellular matrix. Pediatr Res. 1987;22(3):324–9.

    Article  PubMed  CAS  Google Scholar 

  67. Horton WA. Progress in human chondrodysplasias: molecular genetics. Ann N Y Acad Sci. 1996;785:150–9.

    Article  PubMed  CAS  Google Scholar 

  68. Eyre DR, Upton MP, Shapiro FD, Wilkinson RH, Vawter GF. Nonexpression of cartilage type II collagen in a case of Langer-Saldino achondrogenesis. Am J Med Genet. 1985;39:52–67.

    Google Scholar 

  69. Murray LW, Bautista J, James PL, Rimoin DL. Type II collagen defects in the chondrodysplasias. I. Spondyloepiphyseal dysplasias. Am J Hum Genet. 1989;45(1):5–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Tiller GE, Weis MA, Polumbo PA, et al. An RNA-splicing mutation (G+5IVS20) in the type II collagen gene (COL2A1) in a family with spondyloepiphyseal dysplasia congenita. Am J Hum Genet. 1995;56(2):388–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Bogaert R, Wilkin D, Wilcox WR, et al. Expression, in cartilage, of a 7-amino-acid deletion in type II collagen from two unrelated individuals with Kniest dysplasia. Am J Hum Genet. 1994;55(6):1128–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Fernandes RJ, Wilkin DJ, Weis MA, et al. Incorporation of structurally defective type II collagen into cartilage matrix in kniest chondrodysplasia. Arch Biochem Biophys. 1998;355(2):282–90.

    Article  PubMed  CAS  Google Scholar 

  73. Spranger J, Menger H, Mundlos S, Winterpacht A, Zabel B. Kniest dysplasia is caused by dominant collagen II (COL2A1) mutations: parental somatic mosaicism manifesting as Stickler phenotype and mild spondyloepiphyseal dysplasia. Pediatr Radiol. 1994;24(6):431–5.

    Article  PubMed  CAS  Google Scholar 

  74. Weis MA, Wilkin DJ, Kim HJ, et al. Structurally abnormal type II collagen in a severe form of Kniest dysplasia caused by an exon 24 skipping mutation. J Biol Chem. 1998;273(8):4761–8.

    Article  PubMed  CAS  Google Scholar 

  75. Winterpacht A, Superti-Furga A, Schwarze U, et al. The deletion of six amino acids at the C-terminus of the alpha 1 (II) chain causes overmodification of type II and type XI collagen: further evidence for the association between small deletions in COL2A1 and Kniest dysplasia. J Med Genet. 1996;33(8):649–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Kaitila I, Korkko J, Marttinen E, Ala-Kokko L. Phenotypic expressions of a Gly 154Arg mutation in type II collagen in two unrelated patients with spondyloepimetaphyseal dysplasia (SEMD). Am J Med Genet. 1996;63(1):111–22.

    Article  PubMed  CAS  Google Scholar 

  77. Tiller GE, Polumbo PA, Weis MA, et al. Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia. Strudwick type. Nat Genet. 1995;11(1):87–9.

    Article  CAS  PubMed  Google Scholar 

  78. Bonnemann CG, Cox GF, Shapiro F, et al. A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc Natl Acad Sci USA. 2000;97(3):1212–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Paassilta P, Lohiniva J, Annunen S, et al. COL9A3: A third locus for multiple epiphyseal dysplasia. Am J Hum Genet. 1999;64(4):1036–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Warman ML, Abbott M, Apte SS, et al. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet. 1993;5(1):79–82.

    Article  PubMed  CAS  Google Scholar 

  81. Wallis GA, Rash B, Sweetman WA, Thomas JT, Super M, Evans G, Grant ME, Boot-Handford RP. Amnio acid substitutios of conserved residues in the carboxyl-terminal domain of the alpha 1(X) chain of type X collagen occur in 2 unrelated families with metaphyseal chondrodysplasia type Schmid. Am J Hum Genet. 1994;54(2):169–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Li Y, Lacerda DA, Warman ML, et al. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell. 1995;80(3):423–30.

    Article  PubMed  CAS  Google Scholar 

  83. Vikkula M, Mariman EC, Lui VC, et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell. 1995;80(3):431–7.

    Article  PubMed  CAS  Google Scholar 

  84. Hastbacka J, de la Chapelle A, Kaitila I, Sistonen P, Weaver A, Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992;2(3):204–11.

    Article  PubMed  CAS  Google Scholar 

  85. Hastbacka J, de la Chapelle A, Mahtani MM, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994;78(6):1073–87.

    Article  PubMed  CAS  Google Scholar 

  86. Hastbacka J, Superti-Furga A, Wilcox WR, Rimoin DL, Cohn DH, Lander ES. Sulfate transport in chondrodysplasia. Ann N Y Acad Sci. 1996;785:131–6.

    Article  PubMed  CAS  Google Scholar 

  87. Cai G, Nakayama M, Hiraki Y, Ozono K. Mutational analysis of the DTDST gene in a fetus with achondrogenesis type 1B. Am J Med Genet. 1998;78(1):58–60.

    Article  PubMed  CAS  Google Scholar 

  88. Superti-Furga A, Hastbacka J, Rossi A, et al. A family of chondrodysplasias caused by mutations in the diastrophic dysplasia sulfate transporter gene and associated with impaired sulfation of proteoglycans. Ann N Y Acad Sci. 1996;785:195–201.

    Article  PubMed  CAS  Google Scholar 

  89. Superti-Furga A, Hastbacka J, Wilcox WR, et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet. 1996;12(1):100–2.

    Article  PubMed  CAS  Google Scholar 

  90. Superti-Furga A, Rossi A, Steinmann B, Gitzelmann R. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: genotype/phenotype correlations. Am J Med Genet. 1996;63(1):144–7.

    Article  PubMed  CAS  Google Scholar 

  91. Ballo R, Briggs MD, Cohn DH, Knowlton RG, Beighton PH, Ramesar RS. Multiple epiphyseal dysplasia, ribbing type: a novel point mutation in the COMP gene in a South African family. Am J Med Genet. 1997;68(4):396–400.

    Article  PubMed  CAS  Google Scholar 

  92. Briggs MD, Hoffman SM, King LM, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995;10(3):330–6.

    Article  PubMed  CAS  Google Scholar 

  93. Briggs MD, Mortier GR, Cole WG, et al. Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet. 1998;62(2):311–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Cohn DH, Briggs MD, King LM, et al. Mutations in the cartilage oligomeric matrix protein (COMP) gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Ann N Y Acad Sci. 1996;785:188–94.

    Article  PubMed  CAS  Google Scholar 

  95. Deere M, Sanford T, Ferguson HL, Daniels K, Hecht JT. Identification of twelve mutations in cartilage oligomeric matrix protein (COMP) in patients with pseudoachondroplasia. Am J Med Genet. 1998;80(5):510–3.

    Article  PubMed  CAS  Google Scholar 

  96. Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, Francomano CA, Prange CK, Lennon GC, Deere M, et al. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet. 1995;10(3):325–9.

    Article  PubMed  CAS  Google Scholar 

  97. Schipani E, Langman CB, Parfitt AM, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med. 1996;335(10):708–14.

    Article  PubMed  CAS  Google Scholar 

  98. Belin V, Cusin V, Viot G, et al. SHOX mutations in dyschondrosteosis (Leri-Weill syndrome). Nat Genet. 1998;19(1):67–9.

    Article  PubMed  CAS  Google Scholar 

  99. Shears DJ, Vassal HJ, Goodman FR, et al. Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet. 1998;19(1):70–3.

    Article  PubMed  CAS  Google Scholar 

  100. Hopwood JJ, Morris CP. The mucopolysaccharidoses. Diagnosis, molecular genetics and treatment. Mol Biol Med. 1990;7(5):381–404.

    PubMed  CAS  Google Scholar 

  101. Smits P, Bolton AD, Funari V, Hong M, Boyden ED, Lu L, Manning DK, Dwyer ND, et al. Lethal skeletal dysplasia in mice and humans lacking the Golgin GMAP-210. New Engl J Med. 2010;362:206–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773–9.

    Article  PubMed  CAS  Google Scholar 

  103. Bellus GA, McIntosh I, Smith EA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10(3):357–9.

    Article  PubMed  CAS  Google Scholar 

  104. Bennett JT, McMurray SW. Stickler syndrome. J Pediatr Orthop. 1990;10(6):760–3.

    Article  PubMed  CAS  Google Scholar 

  105. Matsui Y, Yasui N, Kimura T, Tsumaki N, Kawabata H, Ochi T. Genotype phenotype correlation in achondroplasia and hypochondroplasia. J Bone Joint Surg Br. 1998;80(6):1052–6.

    Article  PubMed  CAS  Google Scholar 

  106. Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Clinical and genetic heterogeneity of hypochondroplasia. J Med Genet. 1996;33(9):749–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Prinster C, Carrera P, Maschio MD, Weber G, Maghnie M, Vigone MC, Mora S, et al. Comparasion of clinical-radiological and molecular findings in hypochondroplasia. Am J Med Genet. 1998;75(1):109–12.

    Article  PubMed  CAS  Google Scholar 

  108. Bonaventure J, Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism. Am J Med Genet. 1996;63(1):148–54.

    Article  PubMed  CAS  Google Scholar 

  109. Cohn DH. Mutations affecting multiple functional domains of FGFR3 cause different skeletal dysplasias: a personal retrospective in honor of John Wasmuth. Ann N Y Acad Sci. 1996;785:160–3.

    Article  PubMed  CAS  Google Scholar 

  110. Nerlich AG, Freisinger P, Bonaventure J. Radiological and histological variants of thanatophoric dysplasia are associated with common mutations in FGFR-3. Am J Med Genet. 1996;63(1):155–60.

    Article  PubMed  CAS  Google Scholar 

  111. Tretter AE, Saunders RC, Meyers CM, et al. Antenatal diagnosis of lethal skeletal dysplasias. Am J Med Genet. 1998;75(5):518–22.

    Article  PubMed  CAS  Google Scholar 

  112. Rasmussen SA, Bieber FR, Benacerraf BR, Lachman RS, Rimoin DL, Holmes LB. Epidemiology of osteochondrodysplasias: changing trends due to advances in prenatal diagnosis. Am J Med Genet. 1996;61(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  113. Sharony R, Browne C, Lachman RS, Rimoin DL. Prenatal diagnosis of the skeletal dysplasias. Am J Obstet Gynecol. 1993;169(3):668–75.

    Article  PubMed  CAS  Google Scholar 

  114. Lachman RS. Fetal imaging in the skeletal dysplasias: overview and experience. Pediatr Radiol. 1994;24(6):413–7.

    Article  PubMed  CAS  Google Scholar 

  115. Maroteaux P, Lamy M, Robert J. Lenanisme thanatophore. Presse Med. 1967;75:2519–24.

    PubMed  CAS  Google Scholar 

  116. Sahinoglu Z, Uludogan M, Gurbuz A, Karateke A. Prenatal diagnosis of thanatophoric dysplasia in the second trimester: ultrasonography and other diagnostic modalities. Arch Gynecol Obstet. 2003;269(1):57–61.

    Article  PubMed  Google Scholar 

  117. Langer LO Jr, Yang SS, Hall JG, et al. Thanatophoric dysplasia and cloverleaf skull. Am J Med Genet Suppl. 1987;3:167–79.

    Article  PubMed  Google Scholar 

  118. Wilcox W, Tavormina PL, Krakow D, et al. Molecular, radiological, and histopathologic correlations in thanatotropic dysplasia. Am J Med Genet. 1998;78:274–81.

    Article  PubMed  CAS  Google Scholar 

  119. Rousseau F, el Ghouzzi V, Delezoide AL, et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet. 1996;5(4):509–12.

    Article  PubMed  CAS  Google Scholar 

  120. Karczeski B, Cutting GR. Thanatophoric Dysplasia. Gene Reviews® [Internet] 2004 May 21(updated 2013 Sept 12) In: Pagon RA, Adam MP, Andinger HH et al editors. Gene Reviews. University of Washington: Seattle WA; 1993–2014.

    Google Scholar 

  121. Moskowitz N, Carson B, Kopits S, Levitt R, Hart G. Foramen magnum decompression in an infant with homozygous achondroplasia. Case report. J Neurosurg. 1989;70(1):126–8.

    Article  PubMed  CAS  Google Scholar 

  122. Shapiro F. Consequences of an osteogenesis imperfecta diganosis for survival and ambulation. J Pediatr Orthop. 1985;5:456–62.

    Article  PubMed  CAS  Google Scholar 

  123. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Van der Harten HJ, Brons JTJ, Dijkstra PF, et al. Achondrogenesis-hypochondrogenesis: The spectrum of chondrogenesis imperfecta: A radiological, ultrasonographic, and histopathologic study of 23 cases. Pediatr Pathol. 1988;8:571–97.

    Article  PubMed  Google Scholar 

  125. Sillence D, Worthington S, Dixon J, Osborn R, Kozlowski K. Atelosteogenesis syndromes: a review, with comments on their pathogenesis. Pediatr Radiol. 1997;27(5):388–96.

    Article  PubMed  CAS  Google Scholar 

  126. Farrington-Rock C, Firestein MH, Bicknell LS, et al. Mutations in two regions of FLNB result in atelosteogenesis I and III. Hum Mutat. 2006;27(7):705–10.

    Article  PubMed  CAS  Google Scholar 

  127. Krakow D, Robertson SP, King LM, et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet. 2004;36(4):405–10.

    Article  PubMed  CAS  Google Scholar 

  128. Poznanski AK. Punctate epiphyses: a radiological sign not a disease. Pediatr Radiol. 1994;24(6):418–24, 36.

    Google Scholar 

  129. White AL, Modaff P, Holland-Morris F, Pauli RM. Natural history of rhizomelic chondrodysplasia punctata. Am J Med Genet A. 2003;118A(4):332–42.

    Article  PubMed  Google Scholar 

  130. Braverman N, Steel G, Obie C, et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet. 1997;15(4):369–76.

    Article  PubMed  CAS  Google Scholar 

  131. Jeune M, Larbre F, Carron R, Couette I. La maladie congenitale des epiphyses pointillees ou calcinose fetale epiphysaire chondroystrophiante. Arch Fr Pediatr. 1953;10:914–42.

    PubMed  CAS  Google Scholar 

  132. Roth SI, Jimenez JF, Husted S, Seibert JJ, Haynes DW. The histopathology of camptomelia (bent limbs). A dyschondrogenesis. Clin Orthop Relat Res. 1982;167:152–9.

    PubMed  Google Scholar 

  133. Coscia MF, Bassett GS, Bowen JR, Ogilvie JW, Winter RB, Simonton SC. Spinal abnormalities in camptomelic dysplasia. J Pediatr Orthop. 1989;9(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  134. Ray S, Bowen JR. Orthopaedic problems associated with survival in campomelic dysplasia. Clin Orthop Relat Res. 1984;185:77–82.

    PubMed  Google Scholar 

  135. Spentchian M, Merrien Y, Herasse M, et al. Severe hypophosphatasia: characterization of fifteen novel mutations in the ALPL gene. Hum Mutat. 2003;22(1):105–6.

    Article  PubMed  CAS  Google Scholar 

  136. Hall CM, Elcioglu NH. Metatropic dysplasia lethal variants. Pediatr Radiol. 2004;34(1):66–74.

    Article  PubMed  Google Scholar 

  137. O’Sullivan MJ, McAllister WH, Ball RH, Teitelbaum SL, Swanson PE, Dehner LP. Morphologic observations in a case of lethal variant (type I) metatropic dysplasia with atypical features: morphology of lethal metatropic dysplasia. Pediatr Dev Pathol. 1998;1(5):405–12.

    Article  PubMed  Google Scholar 

  138. Shapiro F. Structural abnormalities of the epiphyses in skeletal dysplasias. In: JA Buckwalter ME, LJ Sandell, SB Trippel editors. Skeletal growth and development: clinical issues and basic science advances. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1998. p. 471–89.

    Google Scholar 

  139. Yang SS, Kitchen E, Gilbert EF, Rimoin DL. Histopathologic examination in osteochondrodysplasia. Time for standardization. Arch Pathol Lab Med. 1986;110(1):10–2.

    PubMed  CAS  Google Scholar 

  140. MacCallum WG. Chondrodystrophia fetalis. Notes on the pathological changes in four cases. John Hopkins Hosp Bull. 1915; 26.

    Google Scholar 

  141. Thurston MN, Johnson DR, Kember NF. Cell kinetics of growth cartilage of achondroplastic (cn) mice. J Anat. 1985;140(Pt 3):425–34.

    PubMed Central  PubMed  Google Scholar 

  142. Shapiro F, Mulhern H, Weis MA, Eyre D. Rough endoplasmic reticulum abnormalities in a patient with spondyloepimetaphyseal dysplasia with scoliosis, joint laxity, and finger deformities. Ultrastruct Pathol. 2006;30(5):393–400.

    Article  PubMed  Google Scholar 

  143. Kim PS, Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr Rev. 1998;19(2):173–202.

    PubMed  CAS  Google Scholar 

  144. Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426(6968):891–4.

    Article  PubMed  CAS  Google Scholar 

  145. Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol. 2002;3(4):246–55.

    Article  PubMed  CAS  Google Scholar 

  146. Cooper RR, IV P Maynard JA. Pseudo-achondroplastic dwarfism: a rough-surfaced endoplasmic reticulum storage disorder. J Bone Joint Surg Am. 1973;55A:475–84.

    Google Scholar 

  147. Unger S, Hecht JT. Pseudoachondroplasia and multiple epiphyseal dysplasia: new etiologic developments. Am J Med Genet. Winter. 2001;106(4):244–50.

    Article  CAS  Google Scholar 

  148. Menger H, Mundlos S, Becker K, Spranger J, Zabel B. An unknown spondylo-meta-epiphyseal dysplasia in sibs with extreme short stature. Am J Med Genet. 1996;63(1):80–3.

    Article  PubMed  CAS  Google Scholar 

  149. Sillence DO, Horton WA, Rimoin DL. Morphologic studies in the skeletal dysplasias. Am J Pathol. 1979;96(3):813–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Gilbert-Barnes E, Langer LO Jr, Opitz JM, Laxova R, Sotelo-Arila C. Kniest dysplasia: radiologic, histopathological, and scanning electronmicroscopic findings. Am J Med Genet. 1996;63(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  151. Shapiro F. Pediatric orthopedic deformities. San Diego: Elvesier/Academic Press; 2001.

    Google Scholar 

  152. Gilbert EF, Yang SS, Langer L, Opitz JM, Roskamp JO, Heidelberger KP. Pathologic changes of osteochondrodysplasia in infancy. A review. Pathol Annu. 1987;22(Pt 2):283–345.

    PubMed  Google Scholar 

  153. Nogami H, Oohira A, Ozeki K, Oki T, Ogino T, Murachi S. Ultrastructure of cartilage in heritable disorders of connective tissue. Clin Orthop Relat Res. 1979;143:251–9.

    PubMed  Google Scholar 

  154. Rimoin DL, Hollister DW, Lachman RS, et al. Histologic studies in the chondrodystrophies. Birth Defects Orig Artic Ser. 1974;10(12):274–95.

    PubMed  CAS  Google Scholar 

  155. Rimoin DL, Silberberg R, Hollister DW. Chondro-osseous pathology in the chondrodystrophies. Clin Orthop Relat Res. 1976;114:137–52.

    PubMed  Google Scholar 

  156. Spranger J, Maroteaux P. The lethal osteochondrodysplasias. Adv Hum Genet. 1990;19:1–103, 331–102.

    Google Scholar 

  157. Stanescu R, Stanescu V, Maroteaux P. Homozygous achondroplasia: morphologic and biochemical study of cartilage. Am J Med Genet. 1990;37(3):412–21.

    Article  PubMed  CAS  Google Scholar 

  158. Ponseti IV, Pedrini-Mille A, Pedrini V. Histological and chemical analysis of human iliac crest cartilage. I. Observations on trunk growth. Calcif Tissue Res. 1968;2(3):197–213.

    Article  PubMed  CAS  Google Scholar 

  159. Maynard JA, Ippolito EG, Ponseti IV, Mickelson MR. Histochemistry and ultrastructure of the growth plate in achondroplasia. J Bone Joint Surg Am. 1981;63(6):969–79.

    PubMed  CAS  Google Scholar 

  160. Rimoin DL, Hughes GN, Kaufman RL, Rosenthal RE, McAlister WH, Silberberg R. Endochondral ossification in achondroplastic dwarfism. N Engl J Med. 1970;283(14):728–35.

    Article  PubMed  CAS  Google Scholar 

  161. Keith A. Studies on the anatomical changes which accompany certain growth-disorders of the human body. 1. The nature of the structural alterations in the disorder known as multiple exostoses. J Anat. 1920;54:101–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Ponseti IV. Skeletal growth in achondroplasia. J Bone Joint Surg Am. 1970;52(4):701–16.

    PubMed  CAS  Google Scholar 

  163. Shapiro F. Light and electron microscopic abnormalities in diastrophic dysplasia growth cartilage. Calcif Tissue Int. 1992;51(4):324–31.

    Article  PubMed  CAS  Google Scholar 

  164. Stanescu V, Stanescu R, Maroteaux P. Pathogenic mechanisms in osteochondrodysplasias. J Bone Joint Surg Am. 1984;66(6):817–36.

    PubMed  CAS  Google Scholar 

  165. Williams BR, Cranley RE. Morphologic observations on four cases of SED congenita. Birth Defects Orig Artic Ser. 1974;10(9):75–87.

    PubMed  CAS  Google Scholar 

  166. Wasylenko MJ, Wedge JH, Houston CS. Metaphyseal chondrodysplasia, Schmid type. A defect of ultrastructural metabolism: case report. J Bone Joint Surg Am. 1980;62(4):660–3.

    PubMed  CAS  Google Scholar 

  167. Cooper RR, Pedrini-Mille A, Ponseti IV. Metaphyseal dysostosis: a rough surfaced endoplasmic reticulum storage defect. Lab Invest. 1973;28(1):119–25.

    PubMed  CAS  Google Scholar 

  168. Maynard JA, Ippolito EG, Ponseti IV, Mickelson MR. Histochemistry and ultrastructure of the growth plate in metaphyseal dysostosis: further observations on the structure of the cartilage matrix. J Pediatr Orthop. 1981;1(2):161–9.

    Article  PubMed  CAS  Google Scholar 

  169. Silveri CP, Kaplan FS, Fallon MD, Bayever E, August CS. Hurler syndrome with special reference to histologic abnormalities of the growth plate. Clin Orthop Relat Res. 1991;269:305–11.

    PubMed  Google Scholar 

  170. Peterson L, Parkin J, Nelson A. Mucopolysaccharidosis type VII. A morphologic, cytochemical, and ultrastructural study of the blood and bone marrow. Am J Clin Pathol. 1982;78(4):544–8.

    PubMed  CAS  Google Scholar 

  171. Maynard JA, Cooper RR, Ponseti IV. Morquio’s disease (mucopolysaccharidosis type IV). Ultrastructure of epiphyseal plates. Lab Invest. 1973;28(2):194–205.

    PubMed  CAS  Google Scholar 

  172. Pazzaglia UE, Beluffi G, Castello A, Coci A, Zatti G. Bone changes of mucolipidosis II at different ages. Postmortem study of three cases. Clin Orthop Relat Res. 1992;276:283–90.

    PubMed  Google Scholar 

  173. Maynard JA, Cooper RR, Ponseti IV. A unique rough surfaced endoplasmic reticulum inclusion in pseudoachondroplasia. Lab Invest. 1972;26(1):40–4.

    PubMed  CAS  Google Scholar 

  174. Hall CM, Elcioglu NH, Shaw DG. A distinct form of spondyloepimetaphyseal dysplasia with multiple dislocations. J Med Genet. 1998;35(7):566–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Kozlowski K, Beighton P. Radiographic features of spondylo-epimetaphyseal dysplasia with joint laxity and progressive kyphoscoliosis. Review of 19 cases. Rofo. 1984;141(3):337–41.

    Article  PubMed  CAS  Google Scholar 

  176. Nishimura G, Honma T, Shiihara T, et al. Spondyloepimetaphyseal dysplasia with joint laxity leptodactylic form: clinical course and phenotypic variations in four patients. Am J Med Genet A. 2003;117A(2):147–53.

    Article  PubMed  Google Scholar 

  177. Tsirikos AI, Mason DE, Scott CI Jr, Chang WN. Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL). Am J Med Genet A. 2003;119A(3):386–90.

    Article  PubMed  Google Scholar 

  178. Reeder MM. Gamuts in bone, joint and spine radiology. Comprehensive lists of roentgen differential diagnosis. New York: Springer; 1993.

    Google Scholar 

  179. Kopits SE. Orthopedic complications of dwarfism. Clin Orthop Relat Res. 1976;114:153–79.

    PubMed  Google Scholar 

  180. Tolo VT. Spinal disorders associated with skeletal dysplasias and metabolic diseases. In: Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA, editors. Rothamn-simeone the spine, 6th ed. Philadelphia: Elsevier; 2011. Chapter 32, p. 608.

    Google Scholar 

  181. Lachman RS. The cervical spine in the skeletal dysplasias and associated disorders. Pediatr Radiol. 1997;27(5):402–8.

    Article  PubMed  CAS  Google Scholar 

  182. Svensson O, Aaro S. Cervical instability in skeletal dysplasia. Report of 6 surgically fused cases. Acta Orthop Scand. 1988;59(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  183. Lipson SJ. Dysplasia of the odontoid process in Morquio’s syndrome causing quadriparesis. J Bone Joint Surg Am. 1977;59(3):340–4.

    PubMed  CAS  Google Scholar 

  184. Wynne-Davies R. Instability of the upper cervical spine: Skeletal dysplasia group. Arch Dis Child. 1989;64:283–8.

    Article  Google Scholar 

  185. Madigan R, Worrall T, McClain EJ. Cervical cord compression in hereditary multiple exostosis. Review of the literature and report of a case. J Bone Joint Surg Am. 1974;56(2):401–4.

    PubMed  CAS  Google Scholar 

  186. Bedi A, Hensinger RN. Congenital anomalies of the cervical spine. In: Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA, editors. Rothman-simeone the spine, 6th ed. Philadelphia: Elsevier; 2011. Chapter 30, p.524.

    Google Scholar 

  187. Hensinger RN. Kyphosis secondary to skeletal dysplasias and metabolic disease. Clin Orthop Relat Res. 1977;128:113–28.

    PubMed  Google Scholar 

  188. Caffey J. Achondroplasia of pelvis and lumbosacral spine; some roentgenographic features. Am J Roentgenol Radium Ther Nucl Med. 1958;80(3):449–57.

    PubMed  CAS  Google Scholar 

  189. Lutter LD, Longstein JE, Winter RB, Langer LO. Anatomy of the achondroplastic lumbar canal. Clin Orthop Relat Res. 1977;126:139–42.

    PubMed  Google Scholar 

  190. Bethem D, Winter RB, Lutter L, et al. Spinal disorders of dwarfism. Review of the literature and report of eighty cases. J Bone Joint Surg Am. 1981;63(9):1412–25.

    PubMed  CAS  Google Scholar 

  191. Crossan JF, Wynne-Davies R, Fulford GE. Bilateral failure of the capital femoral epiphysis: bilateral Perthes disease, multiple epiphyseal dysplasia, pseudoachondroplasia, and spondyloepiphyseal dysplasia congenita and tarda. J Pediatr Orthop. 1983;3(3):297–301.

    Article  PubMed  CAS  Google Scholar 

  192. Stelling FH. The hip in heritable conditions of connective tissue. Clin Orthop Relat Res. 1973;90:33–49.

    PubMed  Google Scholar 

  193. Peretti G, Memeo A, Paronzini A, Marzorati S. Staged lengthening in the prevention of dwarfism in achondroplastic children: a preliminary report. J Pediatr Orthop B. 1995;4(1):58–64.

    Article  PubMed  CAS  Google Scholar 

  194. Penrose LS. Parental age and mutation. Lancet. 1955;269(6885):312–3.

    Article  PubMed  CAS  Google Scholar 

  195. Thompson JN Jr, Schaefer GB, Conley MC, Mascie-Taylor CG. Achondroplasia and parental age. N Engl J Med. 1986;314(8):521–2.

    PubMed  Google Scholar 

  196. Wilkin DJ, Szabo JK, Cameron R, et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet. 1998;63(3):711–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  197. Marie P. L’achondroplasie. Dans l’adolescence et l’age adulte. Press Med. 1900;8:17–23.

    Google Scholar 

  198. Shirley ED, Ain MC. Achondroplasia:manifestations and treatment. J Am Acad Orthop Surg. 2009;17:231–41.

    PubMed  Google Scholar 

  199. Maroteaux P, Lamy M. Achondroplasia in man and animals. Clin Orthop Relat Res. 1964;33:91–103.

    PubMed  CAS  Google Scholar 

  200. Knaggs RL. Achondroplasia. Br J Surg. 1927;15:10–39.

    Article  Google Scholar 

  201. Nehme AM, Riseborough EJ, Tredwell SJ. Skeletal growth and development of the achondroplastic dwarf. Clin Orthop Relat Res. 1976;116:8–23.

    PubMed  Google Scholar 

  202. Young ID. Achondroplasia: a case of neglect? Lancet. 1998;352(9145):1950–51.

    Google Scholar 

  203. Hecht JT, Francomano CA, Horton WA, Annegers JF. Mortality in achondroplasia. Am J Hum Genet. 1987;41(3):454–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  204. Hunter AG, Bankier A, Rogers JG, Sillence D, Scott CI Jr. Medical complications of achondroplasia: a multicentre patient review. J Med Genet. 1998;35(9):705–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  205. Tasker RC, Dundas I, Laverty A, Fletcher M, Lane R, Stocks J. Distinct patterns of respiratory difficulty in young children with achondroplasia: a clinical, sleep, and lung function study. Arch Dis Child. 1998;79(2):99–108.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  206. Hecht JT, Horton WA, Reid CS, Pyeritz RE, Chakraborty R. Growth of the formane magnum in achondroplasia. Am J Med Genet. 1989;32:528–35.

    Article  PubMed  CAS  Google Scholar 

  207. Rimoin DL. Cervicomedullary junction compression in infants with achondroplasia: when to perform neurosurgical decompression. Am J Hum Genet. 1995;56(4):824–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  208. Ryken TC, Menezes AH. Cervicomedullary compression in achondroplasia. J Neurosurg. 1994;81(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  209. Pauli RM, Horton VK, Glinski LP, Reiser CA. Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. Am J Hum Genet. 1995;56(3):732–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  210. Committee on Genetics. Health supervision for children with achondroplasia. Pediatrics. 1995; 95:443–51.

    Google Scholar 

  211. Uematsu S, Wang H, Kopits SE, Hurko O. Total craniospinal decompression in achondroplastic stenosis. Neurosurgery. 1994;35(2):250–57; discussion 257–58.

    Google Scholar 

  212. Lutter LD, Langer LO. Neurological symptoms in achondroplastic dwarfs–surgical treatment. J Bone Joint Surg Am. 1977;59(1):87–92.

    PubMed  CAS  Google Scholar 

  213. Ain MC, Shirley ED, Pirouzmanesh A, Hariri A, Carson BS. Postlaminectomy kyphosis in the skeletally immature achondroplast. Spine. 2006;31:197–201.

    Article  PubMed  Google Scholar 

  214. Kopits SE. Thoracolumbar kyphosis and lumbosacral hyperlordosis in achondroplastic children. Basic Life Sci. 1998;48:241–55.

    Google Scholar 

  215. Bailey JA 2nd. Orthopaedic aspects of achondroplasia. J Bone Joint Surg Am. 1970;52(7):1285–301.

    PubMed  Google Scholar 

  216. Bellus GA, McIntosh I, Szabo J, Aylsworth A, Kaitila I, Francomano CA. Hypochondroplasia: molecular analysis of the fibroblast growth factor receptor 3 gene. Ann N Y Acad Sci. 1996;785:182–7.

    Article  PubMed  CAS  Google Scholar 

  217. Glasgow JF, Nevin NC, Thomas PS. Hypochondroplasia. Arch Dis Child. 1978;53(11):868–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  218. Specht EE, Daentl DL. Hypochondroplasia. Clin Orthop Relat Res. 1975;110:249–55.

    Article  PubMed  Google Scholar 

  219. Dahlqvist J, Orlen H, Matsson H, Dahl N, Lonnerholm T, Gustavson KH. Multiple epiphyseal dysplasia. Acta Orthop. 2009;80(6):711–5.

    Article  PubMed Central  PubMed  Google Scholar 

  220. Lachman RS, Krakow D, Cohn DH, Rimoin DL. MED, COMP, multilayered and NEIN: an overview of multiple epiphyseal dysplasia. Pediatr Radiol. 2005;35(2):116–23.

    Article  PubMed  Google Scholar 

  221. Van Mourik JBA, Hamel BCJ, Mariman ECM. A large family with multiple epiphyseal dysplasia linked to COL9A2 gene. Am J Med Genet. 1998;77:234–40.

    Article  PubMed  Google Scholar 

  222. Ribbing S. Studien uber hereditare, multiple epiphysenstorungen. Acta Radiol Suppl. 1937;34:77–107.

    Google Scholar 

  223. Fairbank T. Dysplasia epiphysialis multiplex. Br J Surg. 1947;34(135):225–32.

    Article  PubMed  CAS  Google Scholar 

  224. Stanescu R, Stanescu V, Muriel MP, Maroteaux P. Multiple epiphyseal dysplasia, Fairbank type: morphologic and biochemical study of cartilage. Am J Med Genet. 1993;45(4):501–7.

    Article  PubMed  CAS  Google Scholar 

  225. Ingram RR. Early diagnosis of multiple epiphyseal dysplasia. J Pediatr Orthop. 1992;12(2):241–4.

    Article  PubMed  CAS  Google Scholar 

  226. Mouchet A, Belot J. La tarsomegalie. J Radiol Electrol. 1926;10:289–93.

    Google Scholar 

  227. Trevor D. Tarso-epiphysial aclasis; a congenital error of epiphysial development. J Bone Joint Surg Br. 1950;32-B(2):204–13.

    PubMed  CAS  Google Scholar 

  228. Fairbank TJ. Dysplasia epiphysialis hemimelica (tarso-ephiphysial aclasis). J Bone Joint Surg Br. 1956;38-B(1):237–57.

    PubMed  CAS  Google Scholar 

  229. Buckwalter JA, El-Khoury GY, Flatt AE. Dysplasia epiphysealis hemimelica of the ulna. Clin Orthop Relat Res. 1978;135:36–8.

    PubMed  Google Scholar 

  230. Connor JM, Horan FT, Beighton P. Dysplasia epiphysialis hemimelica. A clinical and genetic study. J Bone Joint Surg Br. 1983;65(3):350–4.

    PubMed  CAS  Google Scholar 

  231. Noyes FR, Kivi LP. Dysplasia epiphysealis hemimelica: a case simulating an intra-articular body. Clin Orthop Relat Res. 1972;86:175–7.

    Article  PubMed  CAS  Google Scholar 

  232. Rao SB, Roy DR. Dysplasia epiphysealis hemimelica. Upper limb involvement with associated osteochondroma. Clin Orthop Relat Res. 1994;307:103–9.

    PubMed  Google Scholar 

  233. Cruz-Conde R, Amaya S, Valdivia P, Hernandez M, Calvo M. Dysplasia epiphysealis hemimelica. J Pediatr Orthop. 1984;4(5):625–9.

    Article  PubMed  CAS  Google Scholar 

  234. Skaggs DL, Moon CN, Kay RM, Peterson HA. Dysplasia epiphysealis hemimelica of the acetabulum. A report of two cases. J Bone Joint Surg Am. 2000;82(3):409–14.

    Article  PubMed  CAS  Google Scholar 

  235. Rosero VM, Kiss S, Terebessy T, Kollo K, Szoke G. Dysplasia epiphysealis hemimelica (Trevor’s disease): 7 of our own cases and a review of the literature. Acta Orthop. 2007;78(6):856–61.

    Article  PubMed  Google Scholar 

  236. Bahk WJ, Lee HY, Kang YK, Park JM, Chun KA, Chung YG. Dysplasia epiphysealis hemimelica: radiographic and magnetic resonance imaging features and clinical outcome of complete and incomplete resection. Skeletal Radiol. 2010;39(1):85–90.

    Article  PubMed  Google Scholar 

  237. Keret D, Spatz DK, Caro PA, Mason DE. Dysplasia epiphysealis hemimelica: diagnosis and treatment. J Pediatr Orthop. 1992;12(3):365–72.

    Article  PubMed  CAS  Google Scholar 

  238. Beighton P. Inherited disorders of the skeleton. Genetics in medicine and surgery series. 2 ed. Edinburgh: Churchill Livingstone; 1978.

    Google Scholar 

  239. Franco B, Meroni G, Parenti G, et al. A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell. 1995;81(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  240. Beighton P, Kozlowski K. Spondylo-epi-metaphyseal dysplasia with joint laxity and severe, progressive kyphoscoliosis. Skeletal Radiol. 1980;5(4):205–12.

    Article  PubMed  CAS  Google Scholar 

  241. Winter RB, Bloom BA. Spine deformity in spondyloepimetaphyseal dysplasia. J Pediatr Orthop. 1990;10(4):535–9.

    PubMed  CAS  Google Scholar 

  242. Lamy M, Maroteaux P. Le nanisme diastrophique. La Presse Medicale. 1960;52:1977–80.

    Google Scholar 

  243. Hollister DW, Lachman RS. Diastrophic dwarfism. Clin Orthop Relat Res. 1976;114:61–9.

    PubMed  Google Scholar 

  244. Langer LO Jr. Diastrophic dwarfism in early infancy. Am J Roentgenol Radium Ther Nucl Med. 1965;93:399–404.

    PubMed  Google Scholar 

  245. Stover CN, Hayes JT, Holt JF. Diastrophic dwarfism. Am J Roentgenol Radium Ther Nucl Med. 1963;89:914–22.

    PubMed  CAS  Google Scholar 

  246. Taybi H. Diastrophic dwarfism. Radiology. 1963;80:1–10.

    Article  PubMed  CAS  Google Scholar 

  247. Walker BA, Scott CI, Hall JG, Murdoch JL, McKusick VA. Diastrophic dwarfism. Medicine (Baltimore). 1972;51(1):41–59.

    Article  PubMed  CAS  Google Scholar 

  248. Herring JA. The spinal disorders in diastrophic dwarfism. J Bone Joint Surg Am. 1978;60(2):177–82.

    PubMed  CAS  Google Scholar 

  249. Bethem D, Winter RB, Lutter L. Disorders of the spine in diastrophic dwarfism. J Bone Joint Surg Am. 1980;62(4):529–36.

    PubMed  CAS  Google Scholar 

  250. Poussa M, Merikanto J, Ryoppy S, Marttinen E, Kaitila I. The spine in diastrophic dysplasia. Spine (Phila Pa 1976). 1991;16(8):881–87.

    Google Scholar 

  251. Remes VM, Marttinen EJ, Poussa MS, Helenius IJ, Peltonen JI. Cervical spine in patients with diastrophic dysplasia–radiographic findings in 122 patients. Pediatr Radiol. 2002;32(9):621–8.

    Article  PubMed  Google Scholar 

  252. Remes V, Poussa M, Peltonen J. Scoliosis in patients with diastrophic dysplasia: a new classification. Spine (Phila Pa 1976). 2001;26(15):1689–97.

    Google Scholar 

  253. Remes V, Tervahartiala P, Poussa M, Peltonen J. Thoracic and lumbar spine in diastrophic dysplasia: a clinical and magnetic resonance imaging analysis. Spine (Phila Pa 1976). 2001;26(2):187–95.

    Google Scholar 

  254. Matsuyama Y, Winter RB, Lonstein JE. The spine in diastrophic dysplasia. The surgical arthrodesis of thoracic and lumbar deformities in 21 patients. Spine (Phila Pa 1976). 1999;24(22):2325–31.

    Google Scholar 

  255. Jalanko T, Remes V, Peltonen J, Poussa M, Helenius I. Treatment of spinal deformities in patients with diastrophic dysplasia: a long-term, population based, retrospective outcome study. Spine (Phila Pa 1976). 2009;34(20):2151–57.

    Google Scholar 

  256. Ryoppy S, Poussa M, Merikanto J, Marttinen E, Kaitila I. Foot deformities in diastrophic dysplasia. An analysis of 102 patients. J Bone Joint Surg Br. 1992;74(3):441–4.

    PubMed  CAS  Google Scholar 

  257. Remes V, Tervahartiala P, Helenius I, Peltonen J. Magnetic resonance imaging analysis of hip joint development in patients with diastrophic dysplasia. J Pediatr Orthop. 2002;22(2):212–6.

    PubMed  Google Scholar 

  258. Weiner DS, Jonah D, Kopits S. The 3-dimensional configuration of the typical hip and knee in diastrophic dysplasia. J Pediatr Orthop. 2010;30(4):403–10.

    Article  PubMed  Google Scholar 

  259. Peltonen J, Remes V, Tervahartiala P. Early degeneration of the knee in diastrophic dysplasia: an MRI study. J Pediatr Orthop. 2003;23(6):722–6.

    Article  PubMed  Google Scholar 

  260. Spranger J, Wiedemann HR. Dysplasia spondyloepiphysaria congenita. Helv Paed Acta. 1996;21:598–611.

    Google Scholar 

  261. Spranger JW, Langer LO Jr. Spondyloepiphyseal dysplasia congenita. Radiology. 1970;94(2):313–22.

    Article  PubMed  CAS  Google Scholar 

  262. Stanescu R, Stanescu V, Bordat C, Maroteaux P. La dysplasie spondylo-epiphysaire congenitale et son heterogeneite. Arch Fr Pediatr. 1980:527–30.

    Google Scholar 

  263. Schantz K, Andersen PE Jr, Justesen P. Spondyloepiphyseal dysplasia tarda. Report of a family with autosomal dominant transmission. Acta Orthop Scand. 1988;59(6):716–9.

    Article  PubMed  CAS  Google Scholar 

  264. Miladi M, Elleuch MH, Sellami S, Douik M. Dysplasie spondylo-epiphysaire tardive avec arthropathies progressives: a propos de trois observations Internat Orthop. 1987;11:271–5.

    CAS  Google Scholar 

  265. Maroteaux P, Lamy M. La dysostose metaphysaire. Sem Hop Paris. 1958;34:1729–35.

    PubMed  CAS  Google Scholar 

  266. Wynne-Davies R, Hall CM, Young ID. Pseudoachondroplasia: clinical diagnosis at different ages and comparison of autosomal dominant and recessive types. A review of 32 patients (26 kindreds). J Med Genet. 1986;23(5):425–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  267. Whitley CB. The mucopolysaccharidoses. In: Beighton P, editor. McKusick’s heritable disorders of connective tissue. 5th ed. St. Louis: Mosby; 1993. p. 367–499.

    Google Scholar 

  268. Morquio L. Sur une forme de dystrophie osseuse familiale. Arch Med Enf. 1929;32:129–40.

    Google Scholar 

  269. Mikles M, Stanton RP. A review of Morquio syndrome. Am J Orthop (Belle Mead NJ). 1997;26(8):533–40.

    PubMed  CAS  Google Scholar 

  270. Pizzutillo PD, Osterkamp JA, Scott CI Jr, Lee MS. Atlantoaxial instability in mucopolysaccharidosis type VII. J Pediatr Orthop. 1989;9(1):76–8.

    Article  PubMed  CAS  Google Scholar 

  271. Quack I, Vonderstrass B, Stock M, et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet. 1999;65(5):1268–78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  272. Cooper SC, Flaitz CM, Johnston DA, Lee B, Hecht JT. A natural history of cleidocranial dysplasia. Am J Med Genet. 2001;104(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  273. Lou Y, Javed A, Hussain S, et al. A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum Mol Genet. 2009;18(3):556–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  274. Yoshida T, Kanegane H, Osato M, et al. Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am J Hum Genet. 2002;71(4):724–38.

    Article  PubMed Central  PubMed  Google Scholar 

  275. Kim HJ, Nam SH, Park HS, et al. Four novel RUNX2 mutations including a splice donor site result in the cleidocranial dysplasia phenotype. J Cell Physiol. 2006;207(1):114–22.

    Article  PubMed  CAS  Google Scholar 

  276. Zheng Q, Sebald E, Zhou G, et al. Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet. 2005;77(2):305–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  277. Stickler GB, Belau PG, Farrell FJ, et al. Hereditary progressive arthro-ophthalmopathy. Mayo Clin Proc. 1965;40:433–55.

    PubMed  CAS  Google Scholar 

  278. Stickler GB, Hughes W, Houchin P. Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med. 2001;3(3):192–6.

    Article  PubMed  CAS  Google Scholar 

  279. Snead MP, Yates JR. Clinical and molecular genetics of stickler syndrome. J Med Genet. 1999;36(5):353–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  280. Leri A, Weill J. Une affection congenitale et symetrique du developpement osseux: la dyschondrosteose. Bull Mem Soc Med Hop Paris. 1929;53:1491–4.

    Google Scholar 

  281. Langer LO Jr. Dyschondrosteosis, a hereditable bone dysplasia with characteristic roentgenographic features. Am J Roentgenol Radium Ther Nucl Med. 1965;95:178–88.

    Article  PubMed  Google Scholar 

  282. Dawe C, Wynne-Davies R, Fulford GE. Clinical variation in dyschondrosteosis. A report on 13 individuals in 8 families. J Bone Joint Surg Br. 1982;64(3):377–81.

    PubMed  CAS  Google Scholar 

  283. Grigelioniene G, Eklof O, Ivarsson SA, et al. Mutations in short stature homeobox containing gene (SHOX) in dyschondrosteosis but not in hypochondroplasia. Hum Genet. 2000;107(2):145–9.

    Article  PubMed  CAS  Google Scholar 

  284. Benito-Sanz S, Thomas NS, Huber C, et al. A novel class of Pseudoautosomal region 1 deletions downstream of SHOX is associated with Leri-Weill dyschondrosteosis. Am J Hum Genet. 2005;77(4):533–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  285. Madelung O. Die spontane subluxation der hand nach vorne. Verh Dtsch Gesell Chir. 1878;7:259.

    Google Scholar 

  286. Beals RK, Lovrien EW. Dyschondrosteosis and Madelung’s deformity. Report of three kindreds and review of the literature. Clin Orthop Relat Res. 1976;116:24–8.

    PubMed  Google Scholar 

  287. Laurencikas E, Soderman E, Grigelioniene G, Hagenas L, Jorulf H. Metacarpophalangeal pattern profile analysis in Leri-Weill dyschondrosteosis. Acta Radiol. 2005;46(2):200–7.

    Article  PubMed  CAS  Google Scholar 

  288. Costa T, Ramsby G, Cassia F, et al. Grebe syndrome: clinical and radiographic findings in affected individuals and heterozygous carriers. Am J Med Genet. 1998;75(5):523–9.

    Article  PubMed  CAS  Google Scholar 

  289. Hunter AG, Thompson MW. Acromesomelic dwarfism: description of a patient and comparison with previously reported cases. Hum Genet. 1976;34(1):107–13.

    Article  PubMed  CAS  Google Scholar 

  290. Cope R, Beals RK, Bennett RM. The trichorhinophalangeal dysplasia syndrome: report of eight kindreds, with emphasis on hip complications, late presentations, and premature osteoarthrosis. J Pediatr Orthop. 1986;6(2):133–8.

    Article  PubMed  CAS  Google Scholar 

  291. Dunbar JD, Sussman MD, Aiona MD. Hip pathology in the trichorhinophalangeal syndrome. J Pediatr Orthop. 1995;15(3):381–5.

    Article  PubMed  CAS  Google Scholar 

  292. Jabs EW, Muller U, Li X, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993;75(3):443–50.

    Article  PubMed  CAS  Google Scholar 

  293. Laville JM, Lakermance P, Limouzy F. Larsen’s syndrome: review of the literature and analysis of thirty-eight cases. J Pediatr Orthop. 1994;14(1):63–73.

    Article  PubMed  CAS  Google Scholar 

  294. Laville JM. Knee deformities in Larsen’s syndrome. J Pediatr Orthop. 1994;3:180–4.

    Article  Google Scholar 

  295. Micheli LJ, Hall JE, Watts HG. Spinal instability in Larsen’s syndrome: report of three cases. J Bone Joint Surg Am. 1976;58(4):562–5.

    PubMed  CAS  Google Scholar 

  296. Bicknell LS, Farrington-Rock C, Shafeghati Y, et al. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB. J Med Genet. 2007;44(2):89–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  297. Hermanns P, Unger S, Rossi A, et al. Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am J Hum Genet. 2008;82(6):1368–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  298. Katz DA, Hall JE, Emans JB. Cervical kyphosis associated with anteroposterior dissociation and quadriparesis in Larsen’s syndrome. J Pediatr Orthop. 2005;25(4):429–33.

    Article  PubMed  Google Scholar 

  299. Luk KD, Yip DK. Congenital anteroposterior spinal dissociation in Larsen’s Syndrome: report on two operated cases with long-term follow-up. Spine (Phila Pa 1976). 15 2002;27(12):E296–300.

    Google Scholar 

  300. Ollier M. Dyschondroplasie. Lyon Med. 1900;93:23–4.

    Google Scholar 

  301. Ollier M. Sur une nouvelle affection: la dyschondroplasie. Rev De Chir. 1900;21:396.

    Google Scholar 

  302. Paterson DC, Morris LL, Binns GF, Kozlowski K. Generalized enchondromatosis. A case report. J Bone Joint Surg Am. 1989;71(1):133–40.

    PubMed  CAS  Google Scholar 

  303. Fairbank HAT. Dyschondroplasia. J Bone Joint Surg Br. 1948;30:689–704.

    Google Scholar 

  304. Shapiro F. Ollier’s disease. an assessment of angular deformity, shortening, and pathological fracture in twenty-one patients. J Bone Joint Surg Am. 1982;64(1):95–103.

    PubMed  CAS  Google Scholar 

  305. Chang S, Prados MD. Identical twins with Ollier’s disease and intracranial gliomas: case report. Neurosurgery. 1994;34(5):903–06; discussion 906.

    Google Scholar 

  306. Nakayama Y, Takeno Y, Tsugu H, Tomonaga M. Maffucci’s syndrome associated with intracranial chordoma: case report. Neurosurgery. 1994;34(5):907–09; discussion 909.

    Google Scholar 

  307. Bessel Hagen F. Ueber Knochen-und Gelenkanomalieen, insbesondere bei partiellem Riesenwuchs und bei multiplen cartilaginaren Exostosen. Arch Klin Chir. 1891;41:420–66, 505–52, 749–823.

    Google Scholar 

  308. Bethge JFJ. Hereditare, multiple Exostosen and ihre pathogenetische Deutung. Archiv Orthop Unfall-Chir. 1963;54:667–96.

    Article  Google Scholar 

  309. Ehrenfried A. Multiple cartilaginous exostoses—hereditary deforming chondrodysplasia. J Am Med Assoc. 1915;64:1642–6.

    Article  Google Scholar 

  310. Ehrenfried A. Hereditary deforming chondrodysplasia – multiple cartilaginous exostoses. J Am Med Assoc. 1917;68:502–8.

    Article  Google Scholar 

  311. Gibney VP. Hereditary multiple exostosis: four cases with remarks. Am J Med Sci. 1876;72:73–80.

    Article  Google Scholar 

  312. Jaffe HL. Hereditary multiple exostosis. Arch Path. 1943;36:335–57.

    Google Scholar 

  313. Lenormant C. Les troubles de croissance. Dans les exostoses osteogeniques et ler chondromes des os. Rev Orthop. 1905;6:193–233.

    Google Scholar 

  314. Ollier M. Exostoses osteogeniques multiples. Lyon Med. 1898;88:484–5.

    Google Scholar 

  315. Peterson HA. Multiple hereditary osteochondromata. Clin Orthop Relat Res. 1989;239:222–30.

    PubMed  Google Scholar 

  316. Solomon L. Hereditary multiple exostosis. J Bone Joint Surg Am. 1963;45B:292–304.

    Google Scholar 

  317. Fairbank HAT. Diaphysial aclasis. J Bone Joint Surg Am. 1949;31B:105–13.

    CAS  Google Scholar 

  318. Hennekam RC. Hereditary multiple exostoses. J Med Genet. 1991;28(4):262–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  319. Hospital Reports. Guy’s Hospital. Case of cartilagenous exostosis. Lancet II. 1825;91.

    Google Scholar 

  320. Shapiro F, Simon S, Glimcher MJ. Hereditary multiple exostoses. Anthropometric, roentgenographic, and clinical aspects. J Bone Joint Surg Am. 1979;61(6A):815–24.

    PubMed  CAS  Google Scholar 

  321. Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005;13(2):110–20.

    PubMed  Google Scholar 

  322. Wuyts W, Schmale GA, Chansky HA, Raskind WH. Hereditary multiple osteochondromas. Gene reviews® [Internet] 2000 Aug 3 [Updated 2013, Nov 21] In: Pagon RA, Adam MP, Ardinger HH et al, editors. University of Washington: Seattle WA.

    Google Scholar 

  323. Porter DE, Lonie L, Fraser M, et al. Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study. J Bone Joint Surg Br. 2004;86(7):1041–6.

    Article  PubMed  CAS  Google Scholar 

  324. Jager M, Westhoff B, Portier S, et al. Clinical outcome and genotype in patients with hereditary multiple exostoses. J Orthop Res. 2007;25(12):1541–51.

    Article  PubMed  Google Scholar 

  325. Bovee J. Multiple osteochondromas. Orphanet Journal of Rare Disease. 2008;3(3): doi:10.1186/1750-1172-1183-1183.

  326. McCormick C, Leduc Y, Martindale D, et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparen sulfate. Nat Genet. 1998;19:158–61.

    Article  PubMed  CAS  Google Scholar 

  327. Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273(41):26265–8.

    Article  PubMed  CAS  Google Scholar 

  328. Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, Casey B, Bakker B, Sangiorgi L, Wuyts W. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat. 2009;30(12):1620–7.

    Article  PubMed  CAS  Google Scholar 

  329. McCormick C, Duncan G, Goutsos KT, Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA. 2000;97(2):668–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  330. Virchow R. Uber multiple exostosen, mit vorlegung von praparaten. Berl Klin Woch. 1891;28:1082.

    Google Scholar 

  331. Langenskiold A. Normal and pathological bone growth in the light of the development of cartilaginous foci in chondrodysplasia. Acta Chir Scan. 1947;95:367–86.

    CAS  Google Scholar 

  332. Leveuf MJ. Le probleme de la croissance de l’os en longueur etudie a la lumiere de la maladie exostosique. Rev Orthop. 1946;32:5–14.

    PubMed  CAS  Google Scholar 

  333. Ogden JA. Multiple hereditary osteochondromata. Report of an early case. Clin Orthop Relat Res. 1976;116:48–60.

    PubMed  Google Scholar 

  334. Milgram JW. The origins of osteochondromas and enchondromas. A histopathologic study. Clin Orthop Relat Res. 1983;174:264–84.

    PubMed  Google Scholar 

  335. Shapiro F, Ellis R. Experimental induction of osteochondromas. Orthopaedic Transactions. 1977;1(51).

    Google Scholar 

  336. Hwang SK, Park BM. Induction of osteochondromas by periosteal resection. Orthopedics. 1991;14(7):809–12.

    PubMed  CAS  Google Scholar 

  337. Mansoar A, Beals RK. Multiple exostosis: a short study of abnormalities near the growth plate. J Pediatr Orthop B. 2007;16:363–5.

    Article  Google Scholar 

  338. Weiner DS, Hoyt WA Jr. The development of the upper end of the femur in multiple hereditary exostosis. Clin Orthop Relat Res. 1978;137:187–90.

    PubMed  Google Scholar 

  339. Porter DE, Benson MK, Hosney GA. The hip in hereditary multiple exostoses. J Bone Joint Surg Br. 2001;83(7):988–95.

    Article  PubMed  CAS  Google Scholar 

  340. Felix NA, Mazur JM, Loveless EA. Acetabular dysplasia associated with herediatry multiple exostoses. J bone Joint Surg [Br]. 1998;81-B:555–7.

    Google Scholar 

  341. Malagon V. Development of hip dysplasia in hereditary multiple exostosis. J Pediatr Orthop. 2001;21(2):205–11.

    PubMed  CAS  Google Scholar 

  342. Nawata K, Teshima R, Minamizaki T, Yamamoto K. Knee deformities in multiple hereditary exostoses. A longitudinal radiographic study. Clin Orthop Relat Res. 1995;313:194–9.

    PubMed  Google Scholar 

  343. Snearly WN, Peterson HA. Management of ankle deformities in multiple hereditary osteochondromata. J Pediatr Orthop. 1989;9(4):427–32.

    Article  PubMed  CAS  Google Scholar 

  344. Burgess RC, Cates H. Deformities of the forearm in patients who have multiple cartilaginous exostosis. J Bone Joint Surg Am. 1993;75(1):13–8.

    PubMed  CAS  Google Scholar 

  345. Taniguchi K. A practical classification system for multiple cartilaginous exostosis in children. J Pediatr Orthop. 1995;15(5):585–91.

    Article  PubMed  CAS  Google Scholar 

  346. Arms DM, Strecker WB, Manske PR, Schoenecker PL. Management of forearm deformity in multiple hereditary osteochondromatosis. J Pediatr Orthop. 1997;17(4):450–4.

    PubMed  CAS  Google Scholar 

  347. Stanton RP, Hansen MO. Function of the upper extremities in hereditary multiple exostoses. J Bone Joint Surg Am. 1996;78(4):568–73.

    PubMed  CAS  Google Scholar 

  348. Masada K, Tsuyuguchi Y, Kawai H, Kawabata H, Noguchi K, Ono K. Operations for forearm deformity caused by multiple osteochondromas. J Bone Joint Surg Br. 1989;71(1):24–9.

    PubMed  CAS  Google Scholar 

  349. Fogel GR, McElfresh EC, Peterson HA, Wicklund PT. Management of deformities of the forearm in multiple hereditary osteochondromas. J Bone Joint Surg Am. 1984;66(5):670–80.

    PubMed  CAS  Google Scholar 

  350. Peterson HA. Deformities and problems of the forearm in children with multiple hereditary osteochondromata. J Pediatr Orthop. 1994;14(1):92–100.

    Article  PubMed  CAS  Google Scholar 

  351. Siffert RS, Levy RN. Correction of wrist deformity in diaphyseal aclasis by stapling. Report of a case. J Bone Joint Surg Am. 1965;47(7):1378–80.

    PubMed  CAS  Google Scholar 

  352. Finidori G, Rigault P, Padovani JP. Growth disturbance of the forearm in multiple exostosis and dyschondroplasia (author’s transl). Chir Pediatr. 1979;20(2):143–8.

    PubMed  CAS  Google Scholar 

  353. Irani RN, Petrucelli RC. Ulnar lengthening for negative ulnar variance in hereditary multiple osteochondromas. J Pediatr Orthop. 1993;1:143–7.

    Article  Google Scholar 

  354. Akita S, Murase T, Yonenobu K, Shimada K, Masada K, Yoshikawa H. Long-term results of surgery for forearm deformities in patients with multiple cartilaginous exostoses. J Bone Joint Surg Am. 2007;89(9):1993–9.

    Article  PubMed  Google Scholar 

  355. Waters PM, Van Heest AE, Emans J. Acute forearm lengthenings. J Pediatr Orthop. 1997;17(4):444–9.

    PubMed  CAS  Google Scholar 

  356. Rodgers WB, Hall JE. One-bone forearm as a salvage procedure for recalcitrant forearm deformity in hereditary multiple exostoses. J Pediatr Orthop. 1993;13(5):587–91.

    Article  PubMed  CAS  Google Scholar 

  357. Cardelia JM, Dormans JP, Drummond DS, Davidson RS, Duhaime C, Sutton L. Proximal fibular osteochondroma with associated peroneal nerve palsy: a review of six cases. J Pediatr Orthop. 1995;15(5):574–7.

    Article  PubMed  CAS  Google Scholar 

  358. Roach JW, Klatt JWB, Faulker ND. Involvement of the spine in patients with multiple hereditary exostoses. J Bone Joint Surg Am. 2009;91:1942–8.

    Article  PubMed  Google Scholar 

  359. Vasseur MA, Fabre O. Vascular complications of osteochondromes. J Vasc Surg. 2000;31(3):532–8.

    Article  PubMed  CAS  Google Scholar 

  360. Huvos AG. Multiple osteocartilaginous exostosis (hereditary multiple exostosis, diaphyseal aclasis). In: Saunders W, editor. In bone tumors. Diagnosis, treatment and prognosis. 2 ed. Philadelphia: Saunders. 1991; p. 264–284.

    Google Scholar 

  361. Black B, Dooley J, Pyper A, Reed M. Multiple hereditary exostoses. An epidemiologic study of an isolated community in Manitoba. Clin Orthop Relat Res. 1993;287:212–7.

    PubMed  Google Scholar 

  362. Wicklund CL, Pauli RM, Johnston D, Hecht JT. Natural history study of hereditary multiple exostoses. Am J Med Genet. 1995;55(1):43–6.

    Article  PubMed  CAS  Google Scholar 

  363. Francannet C, Cohen-Tanugi A, Le Merrer M, Munnich A, Bonaventure J, Legeai-Mallet L. Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet. 2001;38(7):430–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  364. Maroteaux P. La metachondromatose. Z Kinderheilk. 1971;109:246–61.

    Article  PubMed  CAS  Google Scholar 

  365. Keret D, Bassett GS. Avascular necrosis of the capital femoral epiphysis in metachondromatosis. J Pediatr Orthop. 1990;10(5):658–61.

    Article  PubMed  CAS  Google Scholar 

  366. Wenger DR, Birch J, Rathjen K, Tobin R, Billman G. Metachondromatosis and avascular necrosis of the femoral head: a radiographic and histologic correlation. J Pediatr Orthop. 1991;11(3):294–300.

    Article  PubMed  CAS  Google Scholar 

  367. Albers-Schonberg H. Rontgenbilder einer seltenen knocherenkrankung. Munch Med Wochenschr. 1904;51:365.

    Google Scholar 

  368. Shapiro F. Osteopetrosis. Current clinical considerations. Clin Orthop Relat Res. 1993;294:34–44.

    Google Scholar 

  369. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int. 2009;84(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  370. Kaibara N, Katsuki I, Hotokebuchi T, Takagishi K. Intermediate form of osteopetrosis with recessive inheritance. Skeletal Radiol. 1982;9(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  371. Sly WS, Whyte MP, Sundaram V, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.

    Article  PubMed  CAS  Google Scholar 

  372. Bollerslev J. Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical and hormonal aspects. Endocr Rev. 1989;10:45–67.

    Article  PubMed  CAS  Google Scholar 

  373. Bollerslev J, Andersen PE Jr. Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone. 1988;9(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  374. Bollerslev J, Andersen PE Jr. Fracture patterns in two types of autosomal-dominant osteopetrosis. Acta Orthop Scand. 1989;60(1):110–2.

    Article  PubMed  CAS  Google Scholar 

  375. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  376. Van Hul W, Bollerslev J, Gram J, et al. Localization of a gene for autosomal dominant osteopetrosis (Albers-Schönberg disease) to chromosome 1p21. Am J Hum Genet. 1997;61:363–9.

    Article  PubMed Central  PubMed  Google Scholar 

  377. Felix R, Hofstetter W, Cecchini MG. Recent developments in the understanding of the pathophysiology of osteopetrosis. Eur J Endocrinol. 1996;134(2):143–56.

    Article  PubMed  CAS  Google Scholar 

  378. Marks SC Jr, Schneider GB. Evidence for a relationship between lymphoid cells and osteoclasts: bone resorption restored in ia (osteopetrotic) rats by lymphocytes, monocytes and macrophages from a normal littermate. Am J Anat. 1978;152(3):331–41.

    Article  PubMed  Google Scholar 

  379. Milgram JW, Jasty M. Osteopetrosis. A morphological study of twenty-one cases. J Bone Joint Surg Am. 1982;64(6):912–29.

    PubMed  CAS  Google Scholar 

  380. Shapiro F, Key LL, Anast C. Variable osteoclast appearance in human infantile osteopetrosis. Calcif Tissue Int. 1988;43(2):67–76.

    Article  PubMed  CAS  Google Scholar 

  381. Shapiro F, Glimcher MJ, Holtrop ME, Tashjian AH Jr, Brickley-Parsons D, Kenzora JE. Human osteopetrosis: a histological, ultrastructural, and biochemical study. J Bone Joint Surg Am. 1980;62(3):384–99.

    PubMed  CAS  Google Scholar 

  382. Reeves JD, August CS, Humbert JR, Weston WL. Host defense in infantile osteopetrosis. Pediatrics. 1979;64(2):202–6.

    PubMed  CAS  Google Scholar 

  383. Beard CJ, Key L, Newburger PE, et al. Neutrophil defect associated with malignant infantile osteopetrosis. J Lab Clin Med. 1986;108(5):498–505.

    PubMed  CAS  Google Scholar 

  384. Frattini A, Orchard PJ, Sobacchi C, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000;25(3):343–6.

    Article  PubMed  CAS  Google Scholar 

  385. Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.

    Article  PubMed  CAS  Google Scholar 

  386. Pata M, Heraud C, Vacher J. OSTM1 bone defect reveals an intercellular hematopoietic crosstalk. J Biol Chem. 2008;283(45):30522–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  387. Sobacchi C, Frattini A, Guerrini MM, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.

    Article  PubMed  CAS  Google Scholar 

  388. Guerrini MM, Sobacchi C, Cassani B, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  389. Van Wesenbeeck L, Odgren PR, Coxon FP, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  390. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His—Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991;49(5):1082–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  391. Del Fattore A, Peruzzi B, Rucci N, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006;43(4):315–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  392. Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003;18(10):1740–7.

    Article  PubMed  CAS  Google Scholar 

  393. Waguespack SG, Hui SL, Dimeglio LA, Econs MJ. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab. 2007;92(3):771–8.

    Article  PubMed  CAS  Google Scholar 

  394. Taranta A, Migliaccio S, Recchia I, et al. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol. 2003;162(1):57–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  395. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet. 2009;124(6):561–77.

    Article  PubMed  CAS  Google Scholar 

  396. Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med. 2004;351(27):2839–49.

    Article  PubMed  Google Scholar 

  397. Adams BK. Scintigraphy in a patient with complicated osteopetrosis. Clin Nuc Med. 1988;14:323.

    Article  Google Scholar 

  398. Bollerslev J, Anderson PEJ. Fracture patterns in 2 types of autosomal-dominant osteopetrosis. Acta Orthop Scand. 1989;6(60):110–2.

    Article  Google Scholar 

  399. Cameron HU, Dewar FP. Degenerative osteoarthritis associated with osteopetrosis. Clin Orthop Relat Res. 1977;127:148–9.

    PubMed  Google Scholar 

  400. Armstrong DG, Newfield JT, Gillespie R. Orthopedic management of osteopetrosis: results of a survey and review of the literature. J Pediatr Orthop. 1999;19(1):122–32.

    PubMed  CAS  Google Scholar 

  401. Lehman RAW, Reeves JD, Wilson WB, Wesenberg RL. Neurologic complications of infantile osteopetrosis. Ann Neurol. 1977;2:378–84.

    Article  PubMed  CAS  Google Scholar 

  402. Haines SJ, Erickson DL, Wirtschafter JD. Optic nerve decompression for osteopetrosis in early childhood. Neurosurgery. 1988;23(4):470–5.

    Article  PubMed  CAS  Google Scholar 

  403. Key L, Carnes D, Cole S, et al. Treatment of congenital osteopetrosis with high-dose calcitriol. N Engl J Med. 1984;310(7):409–15.

    Article  PubMed  CAS  Google Scholar 

  404. Key LL Jr, Rodriguiz RM, Willi SM, et al. Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med. 1995;332(24):1594–9.

    Article  PubMed  Google Scholar 

  405. Walker DG. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975;190(4216):784–5.

    Article  PubMed  CAS  Google Scholar 

  406. Coccia PF, Krivit W, Cervenka J, et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980;302(13):701–8.

    Article  PubMed  CAS  Google Scholar 

  407. Fischer A, Griscelli C, Friedrich W, et al. Bone marrow transplantation for immunodeficiencies and osteopetrosis, European survey 1968–1985. Lancet II. 1986:1080.

    Google Scholar 

  408. Kaplan FS, August CS, Fallon MD, Dalinka M, Axel L, Haddad JG. Successful treatment of infantile malignant osteopetrosis by bone-marrow transplantation. A case report. J Bone Joint Surg Am. 1988;70(4):617–23.

    PubMed  CAS  Google Scholar 

  409. Solh H, Da Cunha AM, Giri N, et al. Bone marrow transplantation for infantile malignant osteopetrosis. J Pediatr Hematol Oncol. 1995;17(4):350–5.

    Article  PubMed  CAS  Google Scholar 

  410. Gerritsen EJ, Vossen JM, Fasth A, et al. Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J Pediatr. 1994;125(6 Pt 1):896–902.

    Google Scholar 

  411. Rappaport JM. Bone marrow transplantation. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. Vol 1. 3 ed. Philadelphia: WB Saunders; 1987: p. 255.

    Google Scholar 

  412. Driessen GJ, Gerritsen EJ, Fischer A, et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 2003;32(7):657–63.

    Article  PubMed  CAS  Google Scholar 

  413. Villa A, Pangrazio A, Caldana E, et al. Prognostic potential of precise molecular diagnosis of Autosomal Recessive Osteopetrosis with respect to the outcome of bone marrow transplantation. Cytotechnology. 2008;58(1):57–62.

    Article  PubMed Central  PubMed  Google Scholar 

  414. Frattini A, Blair HC, Sacco MG, et al. Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc Natl Acad Sci USA. 2005;102(41):14629–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  415. Meredith SC, Simon MA, Laros GS, Jackson MA. Pycnodysostosis. A clinical, pathological, and ultramicroscopic study of a case. J Bone Joint Surg Am. 1978;60(8):1122–7.

    PubMed  CAS  Google Scholar 

  416. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  PubMed  CAS  Google Scholar 

  417. Maroteaux P, Lamy M. Deux observations d’une affection osseuse condensante: la pycnodystose. Arch francaises ped. 1962;19:267–74.

    CAS  Google Scholar 

  418. Maroteaux P, Lamy M. La pycnodysostose. Presse Med. 1962;70:999–1002.

    PubMed  CAS  Google Scholar 

  419. Fujita Y, Nakata K, Yasui N, et al. Novel mutations of the cathepsin K gene in patients with pycnodysostosis and their characterization. J Clin Endocrinol Metab. 2000;85(1):425–31.

    Article  PubMed  CAS  Google Scholar 

  420. Donnarumma M, Regis S, Tappino B, et al. Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Mutation in brief #961. Online. Hum Mutat. 2007;28(5):524.

    Article  PubMed  Google Scholar 

  421. Nakase T, Yasui N, Hiroshima K, Ohzono K, Higuchi C, Shimizu N, Yoshikawa H. Surgical outcomes after treatment of fractures of femur and tibia in pycnodysostsis. Arch Orthop Trauma Surg. 2007;127(3):161–5.

    Article  PubMed  CAS  Google Scholar 

  422. Shuler SE. Pycnodysostosis. Arch Dis Childh. 1963;38:620–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  423. Fratzl-Zelman N, Valenta A, Roschger P, et al. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab. 2004;89(4):1538–47.

    Article  PubMed  CAS  Google Scholar 

  424. Byers PH, Steiner RD. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–82.

    Article  PubMed  CAS  Google Scholar 

  425. van Dijk FS, Cobben JM, Kariminejad A, van Rijin RR, Pals G. Osteogenesis Imperfecta: a review with clinical examples. Mol Syndromol. 2011;2:1–20.

    PubMed Central  PubMed  Google Scholar 

  426. Looser E. Zur kenntnis der osteogenesis imperfecta congenita und tarda (sogenannte idiopathische osteopsathyrosis). Mitt aus den Grenz der Med Chir. 1906;15:160–207.

    Google Scholar 

  427. Seedorff KS. Osteogenesis imperfecta. A study of clinical features and heredity based on 55 Danish families comprising 180 affected members. Universitetsforlaget I Arhus. 1949.

    Google Scholar 

  428. Sillence D. Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop Relat Res. 1981;159:11–25.

    PubMed  Google Scholar 

  429. Sillence DO, Barlow KK, Garber AP, Hall JG, Rimoin DL. Osteogenesis imperfecta type II delineation of the phenotype with reference to genetic heterogeneity. Am J Med Genet. 1984;17(2):407–23.

    Article  PubMed  CAS  Google Scholar 

  430. Glorieux FH, Rauch F, Plotkin H, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res. 2000;15(9):1650–8.

    Article  PubMed  CAS  Google Scholar 

  431. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res. 2002;17(1):30–8.

    Article  PubMed  Google Scholar 

  432. Ward LM, Rauch F, Travers R, et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 2002;31(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  433. Barnes AM, Chang W, Morello R, et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med. 2006;355(26):2757–64.

    Article  PubMed  CAS  Google Scholar 

  434. Cabral WA, Chang W, Barnes AM, et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39(3):359–65.

    Article  PubMed  CAS  Google Scholar 

  435. Barnes AM, Carter EM, Cabral WA, et al. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med. 2010;362(6):521–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  436. Van Dijk FS, Pals G, Van Rijn RR, Nikkels PG, Cobben JM. Classification of Osteogenesis Imperfecta revisited. Eur J Med Genet. Jan-Feb. 2010;53(1):1–5.

    Article  Google Scholar 

  437. Daly K, Wisbeach A, Sanpera I Jr, Fixsen JA. The prognosis for walking in osteogenesis imperfecta. J Bone Joint Surg Br. 1996;78:477–80.

    PubMed  CAS  Google Scholar 

  438. Burnei G, Vlad C, Georgescu I, Gavriliu TS, Dan D. Osteogenesis imperfecta: diagnosis and treatment. J Am Acad Orthop Surg. 2008;16(6):356–66.

    PubMed  Google Scholar 

  439. Falvo KA, Root L, Bullough PG. Osteogenesis imperfecta: clinical evaluation and management. J Bone Joint Surg Am. 1974;56(4):783–93.

    PubMed  CAS  Google Scholar 

  440. Kocher MS, Shapiro F. Osteogenesis imperfecta. J Am Acad Orthop Surg. 1998;6(4):225–36.

    PubMed  CAS  Google Scholar 

  441. Knaggs RL. Osteogenesis imperfecta. Brit J Surg. 1924;11:737–59.

    Article  Google Scholar 

  442. Smars G. Osteogenesis imperfecta in Sweden. Stockholm: Svenska Bokforlaget; 1961.

    Google Scholar 

  443. Marini JC, Cabral WA, Barnes AM. Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res. 2010;339(1):59–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  444. Marlowe A, Pepin MG, Byers PH. Testing for osteogenesis imperfecta in cases of suspected non-accidental injury. J Med Genet. 2002;39(6):382–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  445. King JD, Bobechko WP. Osteogenesis imperfecta. An orthopaedic description and surgical review. J Bone Joint Surg Am. 1971;53B:72–89.

    Google Scholar 

  446. Spranger J, Cremin B, Beighton P. Osteogenesis imperfecta congenita. Features and prognosis of a heterogenous condition. Pediatr Radiol. 1982;12(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  447. Beals RK, Horton W. Skeletal dysplasias: an approach to diagnosis. J Am Acad Orthop Surg. 1995;3(3):174–81.

    PubMed  Google Scholar 

  448. Bachinger HP, Morris NP, Davis JM. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. Am J Med Genet. 1993;45(2):152–62.

    Article  PubMed  CAS  Google Scholar 

  449. Raghunath M, Bruckner P, Steinmann B. Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J Mol Biol. 1994;236(3):940–9.

    Article  PubMed  CAS  Google Scholar 

  450. Tenni R, Valli M, Rossi A, Cetta G. Possible role of overglycosylation in the type I collagen triple helical domain in the molecular pathogenesis of osteogenesis imperfecta. Am J Med Genet. 1993;45(2):252–6.

    Article  PubMed  CAS  Google Scholar 

  451. Roughley PJ, Rauch F, Glorieux FH. Osteogenesis imperfecta–clinical and molecular diversity. Eur Cell Mater. 30 2003;5:41–7; discussion 47.

    Google Scholar 

  452. Makareeva E, Mertz EL, Kuznetsova NV, et al. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem. 2008;283(8):4787–98.

    Article  PubMed  CAS  Google Scholar 

  453. Persikov AV, Ramshaw JA, Brodsky B. Prediction of collagen stability from amino acid sequence. J Biol Chem. 2005;280(19):19343–9.

    Article  PubMed  CAS  Google Scholar 

  454. Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  455. Bodian DL, Madhan B, Brodsky B, Klein TE. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry. 2008;47(19):5424–32.

    Article  PubMed  CAS  Google Scholar 

  456. Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JA, Brodsky B. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc Natl Acad Sci USA. 2000;97(8):4273–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  457. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am J Med Genet Part A. 2014;164A:1470–1481.

    Google Scholar 

  458. Bullough PG, Davidson DD, Lorenzo JC. The morbid anatomy of the skeleton in osteogenesis imperfecta. Clin Orthop Relat Res. 1981;159:42–57.

    PubMed  Google Scholar 

  459. Casella JP, Stamp TCB, Ali SY. A morphological and ultrastructural study of bone in osteogenesis imperfecta. Calcif Tissue Int. 1996;58:155–65.

    Article  Google Scholar 

  460. Cassella JP, Barber P, Catterall AC, Ali SY. A morphometric analysis of osteoid collagen fibril diameter in osteogenesis imperfecta. Bone. 1994;15(3):329–34.

    Article  PubMed  CAS  Google Scholar 

  461. Falvo KA, Bullough PG. Osteogenesis imperfecta: a histometric analysis. J Bone Joint Surg Am. 1973;55(2):275–86.

    PubMed  CAS  Google Scholar 

  462. van der Harten HJ, Brons JT, Dijkstra PF, et al. Perinatal lethal osteogenesis imperfecta: radiologic and pathologic evaluation of seven prenatally diagnosed cases. Pediatr Pathol. 1988;8(3):233–52.

    Article  PubMed  Google Scholar 

  463. Sztrolovics R, Glorieux FH, Travers R, van der Rest M, Roughley PJ. Osteogenesis imperfecta: comparison of molecular defects with bone histological changes. Bone. 1994;15(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  464. Jaffe HL. The structure of bone. With particular reference to its fibrillar nature and the relation of function to internal architecture. Arch Surg. 1929;19:24–52.

    Article  Google Scholar 

  465. Weidenreich F. Das Knochengewebe. In Handbuch der mikroskopischen anatomie des menschen. In: Mollendorff Wv, editor. Die Gewebe. Teil 2. Sturtzgewebe Knochengewebe Skeletsystem. Berlin: Springer; 1930: 394–406.

    Google Scholar 

  466. Smith JW. Collagen fibre patterns in mammalian bone. J Anat. 1960;94(Pt 3):329–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  467. Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int. 1988;42(3):167–80.

    Article  PubMed  CAS  Google Scholar 

  468. Neville AC. Biology of fibrous composites. Development beyond the cell membrane. Cambridge, England: Cambridge University Press; 1993.

    Book  Google Scholar 

  469. Moorefield WG Jr, Miller GR. Aftermath of osteogenesis imperfecta: the disease in adulthood. J Bone Joint Surg Am. 1980;62(1):113–9.

    PubMed  Google Scholar 

  470. Paterson CR, McAllion S, Stellman JL. Osteogenesis imperfecta after the menopause. N Engl J Med. 1984;310(26):1694–6.

    Article  PubMed  CAS  Google Scholar 

  471. Gargan MF, Wisbeach A, Fixsen JA. Humeral rodding in osteogenesis imperfecta. J Pediatr Orthop. 1996;16(6):719–22.

    Article  PubMed  CAS  Google Scholar 

  472. Sofield HA, Millar EA. Fragmentation, realignment and intramedullary rod fixation of deformities of the long bones in children: a ten year appraisal. J Bone Joint Surg Am. 1959;41A:1371–91.

    Google Scholar 

  473. Williams PF. Fragmentation and rodding in osteogenesis imperfecta. J Bone Joint Surg Br. 1965;47:23–31.

    PubMed  CAS  Google Scholar 

  474. Abulsaad M, Abdelrahman A. Modified Sofield-Millar operation: less invasive surgery of lower limbs in osteogenesis imperfecta. Int Orthop. 2009;33(2):527–32.

    Article  PubMed Central  PubMed  Google Scholar 

  475. Khoshhal KI, Ellis RD. Effect of lower limb Sofield procedure on ambulation in osteogenesis imperfecta. J Pediatr Orthop. 2001;21(2):233–5.

    PubMed  CAS  Google Scholar 

  476. Gamble JG, Strudwick WJ, Rinsky LA, Bleck EE. Complications of intramedullary rods in osteogenesis imperfecta: Bailey-Dubow rods versus nonelongating rods. J Pediatr Orthop. 1988;8(6):645–9.

    Article  PubMed  CAS  Google Scholar 

  477. Bailey RW, Dubow HI. Evolution of the concept of an extensible nail accommodating to normal longitudinal bone growth: clinical considerations and implications. Clin Orthop Relat Res. 1981;159:157–70.

    PubMed  Google Scholar 

  478. Marafioti RL, Westin GW. Elongating intramedullary rods in the treatment of osteogenesis imperfecta. J Bone Joint Surg Am. 1977;59(4):467–72.

    PubMed  CAS  Google Scholar 

  479. Bailey RW. Further clinical experience with the extensible nail. Clin Orthop Relat Res. 1981;159:171–6.

    PubMed  Google Scholar 

  480. Rodriguez RP, Bailey RW. Internal fixation of the femur in patients with osteogenesis imperfecta. Clin Orthop Relat Res. 1981;159:126–33.

    PubMed  Google Scholar 

  481. Lang-Stevenson AI, Sharrard WJ. Intramedullary rodding with Bailey-Dubow extensible rods in osteogenesis imperfecta. An interim report of results and complications. J Bone Joint Surg Br. 1984;66(2):227–32.

    PubMed  CAS  Google Scholar 

  482. Jerosch J, Mazzotti I, Tomasevic M. Complications after treatment of patients with osteogenesis imperfecta with a Bailey-Dubow rod. Arch Orthop Trauma Surg. 1998;117(4–5):240–5.

    Article  PubMed  CAS  Google Scholar 

  483. Zionts LE, Ebramzadeh E, Stott NS. Complications in the use of Bailey-Dubow extensible nail. Clin Orthop Relat Res. 1998;366:186–95.

    Google Scholar 

  484. Wilkinson JM, Scott BW, Clarke AM, Bell MJ. Surgical stabilisation of the lower limb in osteogenesis imperfecta using the Sheffield telescopic intramedullary rod system. J Bone Joint Surg Am. 1998;80B:999–1004.

    Article  Google Scholar 

  485. Nicolaou N, Bowe JD, Wilkinson JA, Fernandes JA, Bell MJ. Use of the Sheffield telescopic intramedullary rod system for the management of osteogenesis imperfecta: clinical outcomes at an average follow-up of nineteen years. J Bone Joint Surg Am. 2011;93:1994–2000.

    Article  PubMed  Google Scholar 

  486. Cho TJ, Choi IH, Chung CY, Yoo WJ, Lee KS, Lee DY. Interlocking telescopic rod for patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2007;89(5):1028–35.

    Article  PubMed  Google Scholar 

  487. Mulpuri K, Joseph B. Intramedullary rodding in osteogenesis imperfecta. J Pediatr Orthop. 2000;20(2):267–73.

    PubMed  CAS  Google Scholar 

  488. Chockalingam S, Bell MJ. Technique of exchange of Sheffield telescopic rod system. J Pediatr Orthop. 2002;22(1):117–9.

    PubMed  Google Scholar 

  489. Fassier F, Glorieux FH. Osteogenesis Imperfecta. Elsevier SAS (Paris). Surg Tech Orthop Traumatol. 55-050-D-30. 2003; 8 pp.

    Google Scholar 

  490. Pega Medical QC. Fassier-Duval telescopic IM SYSTEM. Surg. Tech. 2009;1:1–19.

    Google Scholar 

  491. Garcia-German D, Parra Garcia J, Bueno Sanchez A, Fernandez Fernandez-Arroyo A. Intramedullary telescopic nailing with Fassier-Duval rod in osteogenesis imperfecta. J Bone Joint Surg [Br]. 2009;91-B(SUPP_1):58.

    Google Scholar 

  492. Mickel T. Outcomes and complications of skeletally immature patients treated with elongating Fassier-Duval telescopic rods: a retrospective review. 2010 Annual Meeting: American Academy of Pediatrics; 2010.

    Google Scholar 

  493. Ruck J, Dahan-Oliel N, Montpetit K, Rauch F, Fassier F. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: funtional outcomes at one year. J Child Orthop. 2011;5:217–24.

    Article  PubMed Central  PubMed  Google Scholar 

  494. Birke O, Davies N, Latimer M, Little DG, Bellemore M. Experience with the Fassier-Duval telescopic rod:first 24 consecutive cases with a minimum of 1-year follow-up. J Pediatr Orthop. 2011;31:458–64.

    Article  PubMed  Google Scholar 

  495. Metaizeau J. L’embrochage centro-medullaire coulissant: application au traitement des formes graves d’osteogenese imparfaite. Chir Pediatr. 1987;28:240–3.

    PubMed  CAS  Google Scholar 

  496. Boutaud B, Laville JM. Elastic sliding central medullary nailing with osteogenesis imperfecta. Fourteen cases at eight years follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2004;90(4):304–11.

    Article  PubMed  CAS  Google Scholar 

  497. Luhmann SJ, Sheridan JJ, Capelli AM, Schoenecker PL. Management of lower-extremity deformities in osteogenesis imperfecta with extensible intramedullary rod technique: a 20-year experience. J Pediatr Orthop. 1998;18(1):88–94.

    PubMed  CAS  Google Scholar 

  498. Fassier F, Sardar Z, Aarabi M, Odent T, Haque T, Hamdy R. Results and complications of a surgical technique for correction of coxa vara in children with osteopenic bones. J Pediatr Orthop. 2008;28(8):799–805.

    Article  PubMed  Google Scholar 

  499. Hanscom DA, Bloom BA. The spine in osteogenesis imperfecta. Orthop Clin North Am. 1988;19(2):449–58.

    PubMed  CAS  Google Scholar 

  500. Sawin PD, Menezes AH. Basilar invagination in osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management. J Neurosurg. 1997;86(6):950–60.

    Article  PubMed  CAS  Google Scholar 

  501. Stott NS, Zionts LE. Displaced fractures of the apophysis of the olecranon in children who have osteogenesis imperfecta. J Bone Joint Surg Am. 1993;75(7):1026–33.

    PubMed  CAS  Google Scholar 

  502. Albright JA. Systemic treatment of osteogenesis imperfecta. Clin Orthop Relat Res. 1981;159:88–96.

    PubMed  Google Scholar 

  503. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52.

    Article  PubMed  CAS  Google Scholar 

  504. Castillo H, Samon-Fang L. Effects of Biphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2008;51:17–29.

    Article  Google Scholar 

  505. Rauch F, Glorieux FH. Osteogenesis imperfecta, current and future medical treatment. Am J Med Genet C Semin Med Genet. 2005;139C(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  506. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.

    Article  PubMed  CAS  Google Scholar 

  507. Phillipi CA, Remmington T, Steiner RD. Biphosphonate therapy for osteogenesis imperfecta (Cochrane Collaborative Review). Wiley: Hoboken N.J. 2009.

    Google Scholar 

  508. Rauch F, Travers R, Glorieux FH. Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab. 2006;91(2):511–6.

    Article  PubMed  CAS  Google Scholar 

  509. Forin V, Arabi A, Guigonis V, Filipe G, Bensman A, Roux C. Benefits of pamidronate in children with osteogenesis imperfecta: an open prospective study. Joint Bone Spine. 2005;72(4):313–8.

    Article  PubMed  Google Scholar 

  510. Devogelaer JP, Malghem J, Maldague B, Nagant de Deuxchaisnes C. Radiological manifestations of bisphosphonate treatment with APD in a child suffering from osteogenesis imperfecta. Skeletal Radiol. 1987;16(5):360–3.

    Article  PubMed  CAS  Google Scholar 

  511. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86.

    Article  PubMed  CAS  Google Scholar 

  512. Ward LM, Rauch F, Whyte MP, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355–64.

    Article  PubMed  CAS  Google Scholar 

  513. Rauch F, Munns CF, Land C, Cheung M, Glorieux FH. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res. 2009;24(7):1282–9.

    Article  PubMed  CAS  Google Scholar 

  514. Marini JC. Do bisphosphonates make children’s bones better or brittle? N Engl J Med. 2003;349(5):423–6.

    Article  PubMed  Google Scholar 

  515. Pereira RF, Halford KW, O’Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA. 1995;92(11):4857–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  516. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Shapiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shapiro, F. (2016). Skeletal Dysplasias. In: Pediatric Orthopedic Deformities, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-20529-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20529-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20528-1

  • Online ISBN: 978-3-319-20529-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics