Asner, G., & Archer, R. (2010). Livestock and carbon cycle. In H. Steinfeld., H. A. Mooney, F. Schneider & L. E. Neville (Eds.), Livestock in a changing landscape. Drivers, consequences and responses (pp. 69–82). Scientific Committee on the Problems of the Environment (SCOPE): Island Press.
Google Scholar
Barrett, C. B. (2008). Smallholder market participation: Concepts and evidence from eastern and southern Africa. Food Policy, 33, 299–317.
CrossRef
Google Scholar
Bicheron, P., Defouny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., et al. (2008). GLOBCOVER: Products description and validation report. MEDIAS-France/POSTEL: ESA Globcover Project.
Google Scholar
Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., & Soenario, I. (2005). Exploring changes in world ruminant production systems. Agricultural Systems, 84, 121–153.
CrossRef
Google Scholar
Bowman, G. R., Beauchemin, K. A., & Shelford, J. A. (2003). Fibrolytic enzymes and parity effects on feeding behavior, salivation, and ruminal pH of lactating dairy cows. Journal of Dairy Science, 86(2), 565–575.
CrossRef
Google Scholar
de Leeuw, P. N., & Tothill, J. C. (1993). The concept of rangeland carrying capacity in Sub-Saharan Africa—myth or reality. In R. H. Behnke Jr., I. Scoones, C. Kerven (Eds.), Range Ecology at Disequilibrium. New Models of natural variability and pastoral adaptation in African Savannah (pp. 77–88). London: IIED, Overseas Development Institute.
Google Scholar
Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., et al. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393–410.
CrossRef
Google Scholar
Dregne, H. E. (2002). Land degradation in the drylands. Arid land research and management, 16, 99–132.
CrossRef
Google Scholar
FAO. (2011a). Energy-smart food for people and climate. Rome: United nations food and agriculture organization.
Google Scholar
FAO. (2011b). World livestock 2011—livestock in food security. Rome: United Nations Food and Agriculture Organization.
Google Scholar
Fraser, R. H., & Li, Z. (2002). Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment, 82, 95–110.
CrossRef
Google Scholar
Harris, R. B. (2010). Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74, 1–12.
CrossRef
Google Scholar
Hazell, P. (2007). All-Africa review of experiences with commercial agriculture. Case study on livestock. Background paper for the Competitive Commercial Agriculture in Sub–Saharan Africa (CCAA) Study. http://siteresources.worldbank.org/INTAFRICA/Resources/257994-1215457178567/Ch11_Livestock.pdf. Accessed Mar 2014.
Henderson, B., Gerber, P., Hilinksi, T., Falcucci, A., Ojima, D. S., & Salvatore, M. (2015). Greenhouse gas mitigation potential of the world’s grazing lands: modeling soil carbon and nitrogen fluxes of mitigation practices. Agriculture, Ecosystems & Environment, 207, 91–100.
CrossRef
Google Scholar
Hermann, S. M., Anyamba, A., & Tucker, C. J. (2005). Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change, 15, 394–404.
CrossRef
Google Scholar
Hoddinott, J. (2006). Shocks and their consequences across and within households in rural Zimbabwe. Journal of Development Studies, 42, 301–321.
CrossRef
Google Scholar
Huete, A., Didan, K., van Leeuwen, W., Miura, T., & Glenn, E. (2011). Moderate resolution imaging spectroradiometer vegetation indices. In B. Ramachandran, C. Justice, & M. Abrams (Eds.), Land remote sensing and global environmental change, NASA’s earth observing system and the science of ASTER and MODIS. New York: Springer.
Google Scholar
Jin, Y., Yang, X., Qiu, J., Li, J., Gao, T., Wu, Q., et al. (2014). Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China. Remote Sensing, 6, 1496–1513.
CrossRef
Google Scholar
Jones, P., & Harris, I. (2008). CRU time-series (TS) high resolution gridded datasets. NCAS British Atmospheric Data Centre Climate Research Unit (CRU), University of East Anglia. http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276. Accessed Mar 2014.
Kitalyi, A., Mtenga, L., Morton, J. U., McLeod, A., Thornton, P., Dorward, A., et al. (2005). Why keep livestock if you are poor? In E. Owen, A. Kitalyi, N. Jayasuriay, & T. Smith (Eds.), Livestock and wealth creation: Improving the husbandry of animals kept by resource-poor people in developing countries (pp. 13–27). Nottingham, UK: Nottingham University Press.
Google Scholar
Lalonde, L. G., & Sukigara, T. (1997). Livestock development planning system version 2 user’s guide. Rome: United Nations Food and Agriculture Organization.
Google Scholar
Le Houérou, H. N., & Hoste, H. (1977). Rangeland production and annual rainfall relations in the mediterranean basin and in the African Sahelo-Sudanian zone. Journal of Range Managements, 30, 181–189.
CrossRef
Google Scholar
Le, Q. B., Nkonya, E., Mirzabaev, A. (2014). Biomass productivity-based mapping of global land degradation hotspots. ZEF-Discussion Papers on Development Policy No. 193. University of Bonn.
Google Scholar
Livestock in Development. (1999). Livestock in poverty-focused development. LID, Somerset, UK: Crewkerne.
Google Scholar
LP DAAC (Land Processes Distributed Active Archive Center) (2011). MODIS/AQUA MYD13C1 Vegetation Indices 16-DAY L3 Global 0.05Deg CMG. Collection 5.
Google Scholar
Moll, H. A. J. (2005). Costs and benefits of livestock systems and the role of market and nonmarket relationships. Agricultural Economics, 32, 181–193.
CrossRef
Google Scholar
Nabuurs, G. J. (2004). Current consequences of past actions: how to separate direct from indirect. In C. B. Field & M. R. Raupach (Eds.), The global carbon cycle (pp. 317–326). Washington, DC: Island Press.
Google Scholar
New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate, 13, 2217–2238.
CrossRef
Google Scholar
Nicholson, S. E., Davenport, M. L., & Malo, A. R. (1990). A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climate Change, 17, 209–241.
CrossRef
Google Scholar
Penning de Vries, F. W. T. & Djiteye, M. A. (1982). La productivite des paturages saheliens: une etude des sols, des vegetations et de l’exploitation de cette ressource naturelle.
Google Scholar
Pieri, C. (1989). Fertilité des terres de savanes. Bilan de trente ans de recherche et de développement agricole au sud du Sahara. Ministère de la Coopération/CIRAD/IRAT, Paris.
Google Scholar
Potter, P., & Ramankutty, N. (2010). Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interactions, 14, 1–22.
CrossRef
Google Scholar
Quinlan, T. (1995). Grassland degradation and livestock rearing in Lesotho. Journal of Southern African Studies, 21, 491–507.
CrossRef
Google Scholar
Rahetlah, V. B., Salgado, P., Andrianarisoa, B., Tillard, E., Razafindrazaka, H., Mézo, L. L., et al. (2014). Relationship between normalized difference vegetation index (NDVI) and forage biomass yield in the Vakinankaratra region, Madagascar. Livestock Research for Rural Development. 26: Article #95.
Google Scholar
Randolph, T. F., Schelling, E., Grace, E., Nicholson, C. F., Leroy, J. L., Cole, D. C., et al. (2007). Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science, 85, 2788–2800.
CrossRef
Google Scholar
Ren, H., & Zhou, G. (2014). Determination of green above ground biomass in desert steppe using litter-soil-adjusted vegetation index. European Journal of Remote sensing, 47, 611–625.
CrossRef
Google Scholar
Requier-Desjardins, M. (2006). The Economic costs of desertification: A first survey of some cases in Africa. International Journal of Sustainable Development, 9, 199–209.
CrossRef
Google Scholar
Robinson, T. P., Thornton P. K., Franceschini, G., Kruska, R. L., Chiozza, F., Notenbaert, A., et al. (2011). Global livestock production systems. Rome, Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152 p.
Google Scholar
Robinson, T. P., & Pozzi, F. (2011). Mapping supply and demand for animal-source foods to 2030, Animal Production and Health Working Paper. No. 2. Rome.
Google Scholar
Robinson, T. P., William Wint, G. R., Conchedda, C., Van Boeckel, T. P., Ercoli, V., Palamara, E., et al. (2014). Mapping the global distribution of livestock. Plos One. doi:10.1371/journal.pone.0096084.
Google Scholar
Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data-An investigation on possible approaches for natural forest. Journal of Bioscience, 21, 535–561.
CrossRef
Google Scholar
Sere and Steinfeld, (1996). World livestock production systems: current status, issues and trends. Animal production and health paper No127. FAO. Rome.
Google Scholar
Sheldrick, W. F., Syers, J. K., & Lingard, J. (2004). Contribution of livestock extreta to nutrient balances. Nutrient Cycling Agroecosystems, 66, 119–131.
CrossRef
Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. Rome: United Nations Food and Agriculture Organization.
Google Scholar
Thoma, D. P., Bailey, D. W., Long, D. S., Nielsen, G. A., Henry, M. P., Breneman, M. C., et al. (2002). Short-term monitoring of rangeland forage conditions with AVHRR imagery. Journal of Range Management, 55, 383–389.
CrossRef
Google Scholar
Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P., & Kennedy, P. (2002). Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, 82, 156–171.
CrossRef
Google Scholar
Wainwright, J., & Mulligan, M. (2005). Modelling and model building. In J. Wainwright & M. Mulligan (Eds.), Environmental modelling: Finding simplicity in complexity (pp. 7–74). Chichester, England: John Wiley & Sons.
Google Scholar
Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103, 621–638.
CrossRef
Google Scholar
Zhao, F., Xu, B., Yang, X., Jin, Y., Li, J., Xia, L., et al. (2014). Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingol grassland of Northern China. International Journal of Remote Sensing, 6, 5368–5386.
CrossRef
Google Scholar