Skip to main content
  • 1324 Accesses

Abstract

For the efficient steady state operation, an operation at a high bootstrap current fraction is essential. The bootstrap current is hollow in the radial direction, which tends to be unstable to the MHD modes. But there is certain operating regime, which is stable to MHD modes and has excellent energy and particle confinement property. This regime is called advanced tokamak regime . After some introduction of advanced tokamak research in Sect. 3.1, operation regimes in (q, l i ) and (n e , I p π a 2) are shown in Sect. 3.2. Characteristics and ideal MHD stability of the weak shear operation scenario are introduced in Sect. 3.3. Characteristics and ideal MHD stability of the negative shear and current hole operations are introduced in Sects. 3.4 and 3.5, respectively. We also briefly describe the status and issues of the long pulse operation as an important research direction in Sect. 3.6. New advanced tokamak devices are introduced in Sect. 3.7 and representative data of tokamak and helical device LHD are shown in Sect. 3.8. Activity of IAE Large Tokamak agreement is introduced in a Salon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Ahn, H.S. Kim, Y.S. Park et al., Nucl. Fusion 52, 114001 (2012)

    Article  Google Scholar 

  2. N. Asakura, Y. Koide, K. Itami et al., J. Nucl. Mater. 241–243, 559 (1997)

    Article  Google Scholar 

  3. R. Aymar, Equipe Tore Supra, Plasma physics and controlled nuclear fusion research 1988, vol. 1 (IAEA, Vienna, 1989), p. 9

    Google Scholar 

  4. P. Barabaschi, Y. Kamada, S. Ishida, JT-60SA Team, in Proceedings of IAEA FEC OV/3-2, 2014

    Google Scholar 

  5. E. Barston, Ann. Phys. 29, 282 (1964)

    Article  MathSciNet  Google Scholar 

  6. J. Bucalossi et al., Fusion Eng. Des. 86, 684 (2011)

    Article  Google Scholar 

  7. M. Chatelier, Equipe Tore Supra, Nucl. Fusion 47, S579 (2007)

    Article  Google Scholar 

  8. C.Z. Cheng, H.P. Furth, A.H. Boozer, Plasma Phys. Controlled Fusion 29, 351 (1988)

    Article  Google Scholar 

  9. M. Chu, A. Bonderson, M.S. Chance, Y.Q. Liu et al., Phys. Plasmas 11, 4859 (2004)

    Article  Google Scholar 

  10. L. Colas, V. Basiuk, B. Beaumont et al., Nucl. Fusion 46, S500 (2006)

    Article  Google Scholar 

  11. R.J. Dumont, M. Goniche, A. Ekedahl, B. Sautic et al., Plasma Phys. Controlled Fusion 56, 075020 (2014)

    Article  Google Scholar 

  12. A. Ekedahl, J. Bucalossi, V. Basiuk et al., Nucl. Fusion 49, 095010 (2009)

    Article  Google Scholar 

  13. E. Frieman, M. Rotenberg, Rev. Mod. Phys. 34, 898 (1960)

    Article  MathSciNet  Google Scholar 

  14. T. Fujita, S. Ide, H. Shirai, M. Kikuchi et al., Phys. Rev. Lett. 78, 2377 (1997)

    Article  Google Scholar 

  15. T. Fujita, T. Hatae, T. Oikawa et al., Nucl. Fusion 38, 207 (1998)

    Article  Google Scholar 

  16. T. Fujita, Y. Kamada, S. Ishida et al., Nucl. Fusion 39, 1627 (1999)

    Article  Google Scholar 

  17. T. Fujita, T. Oikawa, T. Suzuki, S. Ide et al., Phys. Rev. Lett. 87, 245001 (2001)

    Article  Google Scholar 

  18. T. Fujita, T. Suzuki, T. Oikawa, A. Isayama et al., Phys. Rev. Lett. 95, 075001 (2005)

    Article  Google Scholar 

  19. T. Fujita, Nucl. Fusion 50, 113001 (2010) (Review Article)

    Google Scholar 

  20. A. Fukuyama et al., in Proceedings of 5th IAEA TCM on α Particles in Fusion Res., 1997

    Google Scholar 

  21. H.P. Furth, J. Kileen, M.N. Rosenbluth, B. Coppi, Plasma physics and controlled nuclear fusion research 1965, vol. 1 (IAEA, Vienna, 1966), p. 103

    Google Scholar 

  22. A. Galeev, Zh. Eksp.Teor. Fiz. 59, 1378 (1970) [Sov. Phys. JETP 32, 752 (1971)]

    Google Scholar 

  23. H.A. Glasser, J.M. Green, J.L. Johnson, Phys. Fluids 18, 875 (1975)

    Article  Google Scholar 

  24. N. Gorelenkov, H.L. Berk, R. Budny et al., Nucl. Fusion 43, 594 (2003)

    Article  Google Scholar 

  25. C. Gormezano, A.C.C. Sips, T.C. Luce, S. Ide et al., Nucl. Fusion 47, S285 (2007)

    Article  Google Scholar 

  26. J.M. Green, M.S. Chance, Nucl. Fusion 21, 453 (1981)

    Article  Google Scholar 

  27. M. Greenwald, Plasma Phys. Controlled Fusion 44, R27 (2002)

    Article  Google Scholar 

  28. R. Grimm, R.L. Dewar, J. Manickam, J. Comp. Phys. 49, 94 (1983)

    Article  Google Scholar 

  29. R. Hawryluk, Rev. Mod. Phys. 70, 537 (1998) (Review Article)

    Google Scholar 

  30. T. Hayashi, K. Tobita, S. Nishio et al., Fusion Eng. Des. 81, 1285 (2006)

    Article  Google Scholar 

  31. P. Helander, P.J. Catto, Phys. Plasmas 8, 1988 (2001)

    Article  Google Scholar 

  32. G. Hoang, C. Bourdelle, X. Garbet, G. Giruzzi et al., Phys. Rev. Lett. 87, 4096 (2001)

    Article  Google Scholar 

  33. M. Honda, M. Kikuchi, M. Azumi, Nucl. Fusion 52, 023021 (2012)

    Article  Google Scholar 

  34. G. Huysmans, T.C. Hender, N.C. Hawkes, X. Litaudon, Phys. Rev. Lett. 87, 245002 (2001)

    Article  Google Scholar 

  35. T. Hwa, M. Kardar, Phys. Rev. A 45, 7002 (1992)

    Article  Google Scholar 

  36. S. Ishida, Y. Neyatani, Y. Kamada, A. Isayama et al., Fusion energy 1996, vol. 1, in Sixteenth Conference Proceedings, Montreal, 7–11 October 1996 (IAEA, Vienna, 1997), p. 315

    Google Scholar 

  37. S. Ishida, T. Fujita et al., Phys. Rev. Lett. 79, 3917 (1997)

    Article  Google Scholar 

  38. S. Ishida, P. Barabaschi, Y. Kamada et al., Nucl. Fusion 51, 094018 (2011)

    Article  Google Scholar 

  39. Y. Ishii, T. Ozeki, S. Tokuda, T. Fujita et al., Plasma Phys. Controlled Fusion 40, 1607 (1998)

    Article  Google Scholar 

  40. ITER Physics Expert Groups, Nucl. Fusion 39, 2175 (1999) (Review Article)

    Google Scholar 

  41. S. Itoh, K.N. Sato, K. Nakamura, H. Zushi et al., Nucl. Fusion 39, 1257 (1999)

    Article  Google Scholar 

  42. J. Jacquinot, G.T. Hoang, Plasma Sci. Technol. 6, 2101 (2004)

    Article  Google Scholar 

  43. J. Jacquinot, Nucl. Fusion 50, 014001 (2010)

    Article  Google Scholar 

  44. E. Joffrin, O. Barana, D. Manzon et al., Nucl. Fusion 47, 1664 (2007)

    Article  Google Scholar 

  45. C.E. Johnson, R.G. Clemmer, G.W. Hollenberg, J. Nucl. Mater. 103–104, 547 (1981)

    Article  Google Scholar 

  46. Y. Kamada, T. Ozeki, M. Azumi, Phys. Fluids B4, 124 (1992)

    Article  Google Scholar 

  47. Y. Kamada, P. Barabaschi, S. Ishida et al., Nucl. Fusion 53, 104010 (2013)

    Article  Google Scholar 

  48. K. Kamiya, K. Ida, Y. Sakamoto et al., Phys. Rev. Lett. 105, 045004 (2010)

    Article  Google Scholar 

  49. M. Keilhacker, A. Gibson, C. Gormezano, P.H. Rebut, Nucl. Fusion 41, 1925 (2001) (Topical Review)

    Google Scholar 

  50. M. Kikuchi, Nucl. Fusion 30, 265 (1990)

    Article  Google Scholar 

  51. M. Kikuchi, Y. Seki, A. Oikawa, T. Ando, Y. Ohara et al., Fusion Eng. Des. 18, 195 (1991)

    Article  Google Scholar 

  52. M. Kikuchi, M. Sato, Y. Koide et al., in Proceedings of 20th EPS Conf. on Plasma Physics and Controlled fusion, Lisboa, vol I7C, part I, p179, 1993

    Google Scholar 

  53. M. Kikuchi, M. Azumi, Plasma Phys. Controlled Fusion 37, 1215 (1995) (Review Article)

    Google Scholar 

  54. M. Kikuchi, Energies 3, 1741 (2010) (Review Article)

    Google Scholar 

  55. M. Kikuchi, Frontier in Fusion Research - Physics and Fusion (Springer, Berlin, 2011)

    Book  Google Scholar 

  56. M. Kikuchi, K. Lackner, M. Tran (ed.), Fusion Physics, IAEA, Vienna, 2012, Free download available at: http://www-pub.iaea.org/books/IAEABooks/8879/Fusion-Physics

  57. C. Kittel, Introduction of Solid State Physics (Wiley, London, 1971)

    MATH  Google Scholar 

  58. Y. Koide, T. Takizuka, S. Takeji et al., Plasma Phys. Controlled Fusion 38, 1011 (1996)

    Article  Google Scholar 

  59. J.G. Kwak, Y.K. Oh, H.L. Yang et al., Nucl. Fusion 53, 104005 (2013)

    Article  Google Scholar 

  60. M. Kwon, Y.S. Na, J.H. Han et al., Fusion Eng. Des. 83, 883 (2008)

    Article  Google Scholar 

  61. B. LaBombard, J.E. Rice, A.E. Hubbard et al., Nucl. Fusion 44, 1047 (2004)

    Article  Google Scholar 

  62. G.S. Lee, M. Kwon, C.J. Doh, B.G. Hong et al., Nucl. Fusion 41, 1515 (2001)

    Article  Google Scholar 

  63. M. Lesur, Y. Idomura, X. Garbet, Phys. Plasmas 16, 092305 (2009)

    Article  Google Scholar 

  64. Z.X. Li, M.Q. Wie, B. Liu, Nucl. Fusion 48, 125003 (2008)

    Article  Google Scholar 

  65. J. Li, H.Y. Guo, B.N. Wan, X.Z. Gong et al., Nat. Phys. 9, 817 (2013)

    Article  Google Scholar 

  66. Q. Li et al., The Construction Progress of HL-2M till Jan 2013, in 25th IEEE Symposium on Fusion Engineering (SOFE), San Francisco, CA, US (No. TPO-113), 10–14 June 2013

    Google Scholar 

  67. Y. Liang, H.R. Koslowski, P.R. Thomas et al., Phys. Rev. Lett. 98, 265004 (2007)

    Article  Google Scholar 

  68. Y. Lin-Liu, V.S. Chan, R. Prater, Phys. Plasmas 10, 4064 (2003)

    Article  Google Scholar 

  69. R.G. Littlejohn, J. Math. Phys. 20, 2445 (1979)

    Article  MathSciNet  Google Scholar 

  70. S.M. Mahajan, D. Ross, G.L. Chen, Phys. Fluids 26, 2195 (1983)

    Article  Google Scholar 

  71. J. Manickam, T. Fujita, N. Gorelenkov, A. Isayama et al., Nucl. Fusion 39, 1819 (1999)

    Article  Google Scholar 

  72. Y. Nabara, Y. Nunoya, T. Isono et al., Teion Kogaku 47, 140 (2012)

    Article  Google Scholar 

  73. M. Nakazawa, Kakuyugokenkyu 56, 196 (1986)

    Google Scholar 

  74. N. Oyama, A. Kojima, N. Aiba et al., Nucl. Fusion 50, 064014 (2010)

    Article  Google Scholar 

  75. T. Ozeki, M. Azumi, S. Tokuda, S. Ishida, Nucl. Fusion 33, 1025 (1993)

    Article  Google Scholar 

  76. T. Ozeki et al., in Proceedings of 30th EPS Conf. Control. Fusion Plasma Phys., vol. 27A, P2-111, 2003

    Google Scholar 

  77. L.W. Packer, M. Gilbert et al., Fusion Eng. Des. 87, 662 (2012)

    Article  Google Scholar 

  78. H.K. Park, A.J.H. Donne, N.C. Luhmann et al., Phys. Rev. Lett. 96, 195004 (2006)

    Article  Google Scholar 

  79. J.K. Park, Y.M. Jeon, J.E. Menard et al., Phys. Rev. Lett. 111, 095002 (2013)

    Article  Google Scholar 

  80. L. Rayleigh, Proc. Roy. Soc. A86, 207 (1912)

    Article  Google Scholar 

  81. K. Sakamoto, M. Tsuneoka, A. Kasugai et al., Phys. Rev. Lett. 73, 3532 (1994)

    Article  Google Scholar 

  82. Y. Sakamoto, T. Suzuki, S. Ide, T. Koide et al., Nucl. Fusion 44, 876 (2004)

    Article  Google Scholar 

  83. Y. Sakamoto, T. Fujita, S. Ide, A. Isayama et al., Nucl. Fusion 45, 574 (2005)

    Article  Google Scholar 

  84. Y. Sakamoto, T. Fujita, S. Ide, A. Isayama et al., Nucl. Fusion 45, 574 (2005)

    Article  Google Scholar 

  85. M. Sasaki, K. Itoh, A. Ejiri, Y. Takase, Contrib. Plasma Phys. 48, 1 (2008)

    Article  Google Scholar 

  86. A. Scarabosio et al., Plasma Phys. Controlled Fusion 48, 663 (2006)

    Article  Google Scholar 

  87. W.M. Shu, Appl. Phys. Lett. 92, 211904 (2008)

    Article  Google Scholar 

  88. A. Sips et al., Plasma Phys. Controlled Fusion 44, B69 (2002)

    Article  Google Scholar 

  89. D.V. Sivukhin, Rev. Plasma Phys. 4, 93 (1966)

    Google Scholar 

  90. T. Stix, The Theory of Plasma Waves (McGraw Hill, New York, 1962)

    MATH  Google Scholar 

  91. E. Strait, L.L. Lao, M.E. Mauel, B.W. Rice et al., Phys. Rev. Lett. 75, 4421 (1995)

    Article  Google Scholar 

  92. T.E. Stringer, in Plasma Physics - An Introductory Course, ed. by R. Dendy, Chap. 14 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  93. H. Sugama, T.H. Watanabe, M. Nunami, Phys. Plasmas 16, 112503 (2009)

    Article  Google Scholar 

  94. T. Takizuka, Y. Sakamoto, T. Fukuda et al., Plasma Phys. Controlled Fusion 44, A423 (2002)

    Article  Google Scholar 

  95. T. Takizuka, K. Hoshino, K. Shimizu, M. Yagi, Contrib. Plasma Phys. 50, 267 (2010)

    Article  Google Scholar 

  96. W. Tang, J.W. Connor, R.J. Hastie, Nucl. Fusion 20, 1439 (1980)

    Article  Google Scholar 

  97. M. Tenenbaum, H. Pollard, Ordinary Differential Equations (Dover, New York, 1985)

    MATH  Google Scholar 

  98. H. Urano, T. Takizuka, Y. Kamada et al., Phys. Rev. Lett. 95, 035003 (2005)

    Article  Google Scholar 

  99. L. Vermale, F. Ryter, C. Angioni, A.G. Peeters et al., Nucl. Fusion 47, 490 (2007)

    Article  Google Scholar 

  100. S. von Goeler, W. Stodiek, N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974)

    Article  Google Scholar 

  101. M. Wade, M. Murakami, P.A. Politzer, Phys. Rev. Lett. 92, 235005 (2004)

    Article  Google Scholar 

  102. B.N. Wan, J. Li, H. Guo, Y. Liang et al., Nucl. Fusion 53, 104006 (2013)

    Article  Google Scholar 

  103. S. Wang, Phys. Rev. Lett. 93, 155007 (2004)

    Article  Google Scholar 

  104. M. Yoshida, Y. Sakamoto, H. Takenaga et al., Phys. Rev. Lett. 103, 065003 (2009)

    Article  Google Scholar 

  105. G.S. Yun, H.K. Park, W. Lee, M.J. Choi et al., Phys. Rev. Lett. 109, 145003 (2012)

    Article  Google Scholar 

  106. M. Zarnstorff, M.G. Bell, M. Bitter et al., Phys. Rev. Lett. 60, 1306 (1988)

    Article  Google Scholar 

  107. F. Zonca, Continuum damping of Toroidal Alfven Eigenmodes in finite β Tokamak Equilibria, Ph.D. thesis, Princeton University, 1993

    Google Scholar 

  108. H. Zushi, S. Itoh, K. Hanada et al., Nucl. Fusion 43, 1600 (2003)

    Article  Google Scholar 

  109. H. Zushi, K. Nakamura, K. Hanada et al., Nucl. Fusion 45, 656 (2005)

    Article  Google Scholar 

  110. H. Zushi, S. Itoh, K. Nakamura et al., Nucl. Fusion 41, 1483 (2001)

    Article  Google Scholar 

  111. H. Zushi, S. Itoh, K. Hanada et al., Nucl. Fusion 43, 1600 (2003)

    Article  Google Scholar 

  112. H. Zushi, K. Nakamura, K. Hanada et al., Nucl. Fusion 45, 656 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

3.8 Appendix: Tokamak/Helical Representative Data

3.8 Appendix: Tokamak/Helical Representative Data

Representative data from JT-60U, JET, Tore Supra, LHD are shown. Data provided by JT-60U (Drs Y. Kamada, S. Ide), JET (Dr. G. Sips), Tore Supra (Drs X. Litaudon, G.T. Hoang), and LHD (Prof. T. Mutoh; *; [566], private communication) (Table 3.1).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kikuchi, M., Azumi, M. (2015). Advanced Tokamak Regime. In: Frontiers in Fusion Research II. Springer, Cham. https://doi.org/10.1007/978-3-319-18905-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18905-5_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18904-8

  • Online ISBN: 978-3-319-18905-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics