Skip to main content

Relaxation Dynamics in an Imbalanced Pair of One-Dimensional Bose Gases

  • Chapter
  • First Online:
Non-equilibrium Dynamics of One-Dimensional Bose Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 776 Accesses

Abstract

In this chapter, we study the relaxation dynamics of a quenched pair of 1D Bose gases with atom number imbalance. As demonstrated in the previous chapters, 1D Bose gases follow completely integrable dynamics via dephasing of their many-body eigenstates. For the imbalanced pair, we observe that this dephasing strongly depends on the choice of observable. In particular, we find that the dephasing can mimic thermalization if suitable initial conditions are imposed on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys, 83, 863–883 (2011)

    Article  ADS  Google Scholar 

  2. J.V. Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Z. Phys. 57, 30–70 (1929)

    Article  ADS  MATH  Google Scholar 

  3. P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  4. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)

    Article  ADS  Google Scholar 

  6. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  7. M. Rigol, Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009)

    Article  ADS  Google Scholar 

  8. J.-S. Caux, J. Mossel, Remarks on the notion of quantum integrability. J. Stat. Mech. Theor. Exp. 2011, P02023 (2011)

    Article  Google Scholar 

  9. T. Kinoshita, T. Wenger, D. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)

    Article  ADS  Google Scholar 

  10. L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate. Nature 443, 312–315 (2006)

    Article  ADS  Google Scholar 

  11. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.E. Mazets, D. Adu Smith, E. Demler, J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012)

    Article  ADS  Google Scholar 

  12. M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51 (2002)

    Article  ADS  Google Scholar 

  13. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013)

    Article  Google Scholar 

  14. J.P. Ronzheimer, M. Schreiber, S. Braun, S.S. Hodgman, S. Langer, I.P. McCulloch, F. Heidrich-Meisner, I. Bloch, U. Schneider, Expansion dynamics of interacting Bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013)

    Article  ADS  Google Scholar 

  15. V.E. Korepin, Quantum inverse scattering method and correlation functions (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  16. I.E. Mazets, J. Schmiedmayer, Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J. Phys. 12, 055023 (2010)

    Article  ADS  Google Scholar 

  17. I.E. Mazets, T. Schumm, J. Schmiedmayer, Breakdown of integrability in a quasi-1D ultracold Bosonic gas. Phys. Rev. Lett. 100, 210403 (2008)

    Article  ADS  Google Scholar 

  18. S. Tan, M. Pustilnik, L.I. Glazman, Relaxation of a high-energy quasiparticle in a one-dimensional Bose gas. Phys. Rev. Lett. 105, 090404 (2010)

    Article  ADS  Google Scholar 

  19. H.-P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Dephasing in coherently split quasicondensates. Phys. Rev. A 83, 023618 (2011)

    Article  ADS  Google Scholar 

  20. I.E. Mazets, private communication

    Google Scholar 

  21. T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Ramsey interference in one-dimensional systems: the full distribution function of fringe contrast as a probe of many-body dynamics. Phys. Rev. Lett. 104, 255302 (2010)

    Article  ADS  Google Scholar 

  22. M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer, Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys. Rev. Lett. 110, 090405 (2013)

    Google Scholar 

  23. M. Kuhnert, Thermalization and prethermalization in an ultracold Bose gas. Ph.D. thesis, Vienna University of Technology, 2013

    Google Scholar 

  24. T. Schweigler, T. Langen, Dynamics of pairs of 1D Bose gases. Unpublished

    Google Scholar 

  25. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004)

    MATH  Google Scholar 

  26. T.L. Schmidt, A. Imambekov, L.I. Glazman, Spin-charge separation in one-dimensional fermion systems beyond Luttinger liquid theory. Phys. Rev. B 82, 245104 (2010)

    Article  ADS  Google Scholar 

  27. T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New. J. Phys. 13, 073018 (2011)

    Article  ADS  Google Scholar 

  28. A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev, M.D. Lukin, E. Demler, Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases. Phys. Rev. Lett. 100, 140401 (2008)

    Article  ADS  Google Scholar 

  29. M.B. Zvonarev, V.V. Cheianov, T. Giamarchi, Spin dynamics in a one-dimensional ferromagnetic Bose gas. Phys. Rev. Lett. 99, 240404 (2007)

    Article  ADS  Google Scholar 

  30. J.N. Fuchs, D.M. Gangardt, T. Keilmann, G.V. Shlyapnikov, Spin waves in a one-dimensional Spinor Bose gas. Phys. Rev. Lett. 95, 150402 (2005)

    Article  ADS  Google Scholar 

  31. J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006)

    Article  ADS  Google Scholar 

  32. C.-L. Hung, V. Gurarie, C. Chin, From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213–1215 (2013)

    Article  ADS  Google Scholar 

  33. N. Linden, S. Popescu, S.J. Short, A. Winter, Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Langen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langen, T. (2015). Relaxation Dynamics in an Imbalanced Pair of One-Dimensional Bose Gases. In: Non-equilibrium Dynamics of One-Dimensional Bose Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18564-4_7

Download citation

Publish with us

Policies and ethics