Skip to main content

Introduction to One-Dimensional Bose Gases

  • Chapter
  • First Online:
Non-equilibrium Dynamics of One-Dimensional Bose Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 844 Accesses

Abstract

Statistical mechanics has proven to be one of the most comprehensive theories in physics. However, despite almost a century of efforts to explain its foundations through the underlying laws of quantum mechanics, our understanding of the emergence of thermal properties still relies on assumptions rather then exact derivations. Only recently, the advances in the manipulation of ultracold atomic clouds have enabled the experimental realization and detailed study of such questions. In this first chapter, the physics of Bose gases in equilibrium are reviewed with a particular focus on 1D bosons in a double-well potential. This equilibrium situation allows the introduction of the tools that will later be used to study 1D Bose gases in various non-equilibrium situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Huang, Statistical Mechanics (Wiley, 1987)

    Google Scholar 

  2. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965)

    Google Scholar 

  3. J.V. Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Z. Phys. 57, 30–70 (1929)

    ADS  MATH  Google Scholar 

  4. D. Ter Haar, Foundations of statistical mechanics. Rev. Mod. Phys. 27, 289–338 (1955)

    ADS  MATH  MathSciNet  Google Scholar 

  5. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011)

    ADS  Google Scholar 

  6. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos scientific laboratory report No. LA-1940 (1955)

    Google Scholar 

  7. G. Gallavotti, Statistical Mechanics: A Short Treatise. Texts and Monographs in Physics (Springer, 1999)

    Google Scholar 

  8. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen (Sitzungsberichte der Akademie der Wissenschaften, 1872)

    Google Scholar 

  9. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    ADS  MATH  MathSciNet  Google Scholar 

  10. R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (Springer, 2007)

    Google Scholar 

  11. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)

    ADS  Google Scholar 

  12. J.M. Deutsch, Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    ADS  MathSciNet  Google Scholar 

  13. P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008)

    ADS  Google Scholar 

  14. S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006)

    Google Scholar 

  15. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008)

    ADS  Google Scholar 

  16. C. Gogolin, M.P. Müller, J. Eisert, Absence of thermalization in nonintegrable systems. Phys. Rev. Lett. 106, 040401 (2011)

    ADS  Google Scholar 

  17. M. Rigol, M. Fitzpatrick, Initial-state dependence of the quench dynamics in integrable quantum systems. Phys. Rev. A 84, 033640 (2011)

    ADS  Google Scholar 

  18. A. Riera, C. Gogolin, J. Eisert, Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080402 (2012)

    ADS  Google Scholar 

  19. M. Rigol, M. Srednicki, Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012)

    ADS  Google Scholar 

  20. D. Podolsky, G. Felder, L. Kofman, M. Peloso, Equation of state and beginning of thermalization after preheating. Phys. Rev. D 73, 023501 (2006)

    ADS  Google Scholar 

  21. L. Kofman, A. Linde, A.A. Starobinsky, Reheating after Inflation. Phys. Rev. Lett. 73, 3195–3198 (1994)

    ADS  Google Scholar 

  22. A. Arrizabalaga, J. Smit, A. Tranberg, Equilibration in \(\varphi ^4\) theory in 3+ 1 dimensions. Phys. Rev. D 72, 025014 (2005)

    ADS  Google Scholar 

  23. J. Berges, Sz. Borsányi, C. Wetterich, Prethermalization. Phys. Rev. Lett. 93, 142002 (2004)

    Google Scholar 

  24. P. Braun-Munzinger, D. Magestro, K. Redlich, S.J. Hadron, Production in Au-Au collisions at RHIC. Phys. Lett. B 518, 41–46 (2001)

    Google Scholar 

  25. U. Heinz, P. Kolb, Early thermalization at RHIC. Nucl. Phys. A 702, 269–280 (2002)

    ADS  Google Scholar 

  26. C. Kollath, A.M. Läuchli, E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model. Phys. Rev. Lett. 98, 180601 (2007)

    ADS  Google Scholar 

  27. M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett. 103, 056403 (2009)

    ADS  Google Scholar 

  28. M. Moeckel, S. Kehrein, Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics. New J. Phys. 12, 055016 (2010)

    ADS  Google Scholar 

  29. R. Barnett, A. Polkovnikov, M. Vengalattore, Prethermalization in quenched spinor condensates. Phys. Rev. A 84, 023606 (2011)

    ADS  Google Scholar 

  30. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    ADS  Google Scholar 

  31. T. Langen, R. Geiger, J. Schmiedmayer, Ultracold atoms out of equilibrium. Annu. Rev. Cond. Mat. Phys. 6, 201 (2015)

    Google Scholar 

  32. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    ADS  Google Scholar 

  33. M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51 (2002)

    ADS  Google Scholar 

  34. T. Kinoshita, T. Wenger, D. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)

    ADS  Google Scholar 

  35. N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, E. Demler, Observation of elastic doublon decay in the Fermi-Hubbard model. Phys. Rev. Lett. 104, 080401 (2010)

    ADS  Google Scholar 

  36. S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197–201 (2010)

    ADS  Google Scholar 

  37. S. Will, D. Iyer, M. Rigol, Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms. Nat. Commun. 6, 6009 (2015)

    ADS  Google Scholar 

  38. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)

    Google Scholar 

  39. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    ADS  Google Scholar 

  40. F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Deterministic preparation of a tunable few-Fermion system. Science 332, 336 (2011)

    Google Scholar 

  41. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    ADS  Google Scholar 

  42. B.S. Rem, A.T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen, N. Navon, L. Khaykovich, F. Werner, D.S. Petrov, F. Chevy, C. Salomon, Lifetime of the bose gas with resonant interactions. Phys. Rev. Lett. 110, 163202 (2013)

    ADS  Google Scholar 

  43. S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057 (2010)

    ADS  Google Scholar 

  44. S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schöllwöck, J. Eisert, I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325–330 (2012)

    Google Scholar 

  45. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012)

    ADS  Google Scholar 

  46. K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M.J.H. Ku, A.T. Sommer, L.W. Cheuk, A. Schirotzek, M.W. Zwierlein, Feynman diagrams versus Fermi-gas Feynman emulator. Nat. Phys. 8, 366–370 (2012)

    Google Scholar 

  47. T. Yefsah, A.T. Sommer, M.J.H. Ku, L.W. Cheuk, W. Ji, W.S. Bakr, M.W. Zwierlein, Heavy solitons in a fermionic superfluid. Nature 499, 426–430 (2013)

    Google Scholar 

  48. A. Görlitz, J.M. Vogels, A.E. Leanhardt, C. Raman, T.L. Gustavson, J.R. Abo-Shaeer, A.P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, W. Ketterle, Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402 (2001)

    Google Scholar 

  49. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 8716, 160405 (2001)

    Google Scholar 

  50. J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Observations of density fluctuations in an elongated bose gas: ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006)

    ADS  Google Scholar 

  51. Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)

    ADS  Google Scholar 

  52. J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011)

    ADS  Google Scholar 

  53. T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004)

    ADS  Google Scholar 

  54. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    ADS  Google Scholar 

  55. E. Haller, M. Gustavsson, M.J. Mark, J.G. Danzl, R. Hart, G. Pupillo, H.-C. Nägerl, Realization of an excited, strongly-correlated quantum gas phase. Science 325, 1224–1227 (2009)

    ADS  Google Scholar 

  56. T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, I. Bouchoule, Sub-poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Phys. Rev. Lett. 106, 230405 (2011)

    ADS  Google Scholar 

  57. A.H. van Amerongen, J.J.P. van Es, P. Wicke, K.V. Kheruntsyan, N.J. van Druten, Yang-Yang thermodynamics on an atom chip. Phys. Rev. Lett. 100, 090402 (2008)

    Google Scholar 

  58. A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev, M.D. Lukin, E. Demler, Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases. Phys. Rev. Lett. 100, 140401 (2008)

    ADS  Google Scholar 

  59. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.E. Mazets, D. Adu Smith, E. Demler, J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012)

    Google Scholar 

  60. E. Haller, R. Hart, M.J. Mark, J.G. Danzl, L. Reichsollner, M. Gustavsson, M. Dalmonte, G. Pupillo, H.-C. Nagerl, Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature 466, 597–600 (2010)

    ADS  Google Scholar 

  61. T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    ADS  Google Scholar 

  62. H. Moritz, T. Stöferle, K. Günter, M. Köhl, T. Esslinger, Confinement induced molecules in a 1D Fermi gas. Phys. Rev. Lett. 94, 210401 (2005)

    ADS  Google Scholar 

  63. M. Gring, Prethermalization in an Isolated Many-Body System. Ph.D. thesis (Vienna University of Technology, 2012)

    Google Scholar 

  64. M. Kuhnert, Thermalization and Prethermalization in an ultracold Bose Gas. Ph.D. thesis (Vienna University of Technology, 2013)

    Google Scholar 

  65. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose-Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)

    ADS  Google Scholar 

  66. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Bose-Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87, 230401 (2001)

    ADS  Google Scholar 

  67. J. Reichel, V. Vuletic (eds.), Atom Chips (Wiley, VCH, 2011)

    Google Scholar 

  68. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, C. Henkel, Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)

    ADS  Google Scholar 

  69. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  Google Scholar 

  70. D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, J. Schmiedmayer, A single-atom detector integrated on an atom chip: fabrication, characterization and application. New J. Phys. 12, 095005 (2010)

    ADS  Google Scholar 

  71. J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009)

    ADS  Google Scholar 

  72. R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011)

    ADS  Google Scholar 

  73. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Kruger, Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57–62 (2005)

    Google Scholar 

  74. A.D. Cronin, J. Schmiedmayer, D. Pritchard, Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009)

    ADS  Google Scholar 

  75. J.F. Schaff, T. Langen, J. Schmiedmayer, Interferometry with atoms. In: M.A. Kasevich, G.M. Tino (eds.) Proceedings of the International School of Physics Enrico Fermi (Varenna, Italy, 2014), pp. 1–87

    Google Scholar 

  76. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011)

    ADS  Google Scholar 

  77. E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    ADS  MATH  MathSciNet  Google Scholar 

  78. C.N. Yang, Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Mat. Phys. 10, 1115 (1969)

    ADS  MATH  Google Scholar 

  79. V.E. Korepin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, 1997)

    Google Scholar 

  80. M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer, Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys. Rev. Lett. 110, 090405 (2013)

    Google Scholar 

  81. D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer, R. Geiger, T. Kitagawa, I. Mazets, E. Demler, J. Schmiedmayer, Prethermalization revealed by the relaxation dynamics of full distribution functions. New J. Phys. 15, 075011 (2013)

    Google Scholar 

  82. T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, D. Adu Smith, I. E. Mazets, J. Schmiedmayer, Prethermalization in one-dimensional Bose gases: description by a stochastic Ornstein-Uhlenbeck process. Eur. Phys. J. Spec. Top. 217, 43–53 (2013)

    Google Scholar 

  83. T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, I. Mazets, D. Adu Smith, T. Kitagawa, E. Demler, J. Schmiedmayer, Studying non-equilibrium many-body dynamics using one-dimensional Bose gases. AIP Conf. Proc. 1633, 11 (2014) (2013)

    Google Scholar 

  84. P. Calabrese, J. Cardy, Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 011368 (2006)

    Google Scholar 

  85. M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, Exact relaxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008)

    ADS  Google Scholar 

  86. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013)

    Google Scholar 

  87. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

    ADS  Google Scholar 

  88. T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New. J. Phys. 13, 073018 (2011)

    ADS  Google Scholar 

  89. E. G. Dalla Torre, E. Demler, A. Polkovnikov, Universal rephasing dynamics after a quantum quench via sudden coupling of two initially independent condensates. Phys. Rev. Lett. 110, 090404 (2013)

    Google Scholar 

  90. C. Neuenhahn, F. Marquardt, Quantum simulation of expanding space-time with tunnel-coupled condensates. arXiv: 1208.2255v1 (2013)

  91. J. Grond, J. Schmiedmayer, U. Hohenester, Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603 (2009)

    ADS  Google Scholar 

  92. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006)

    ADS  MathSciNet  Google Scholar 

  93. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, Reading, 1994)

    Google Scholar 

  94. S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178 (1924)

    ADS  MATH  Google Scholar 

  95. A. Einstein, Zur Quantentheorie des idealen Gases. Sitzungsberichte der Preußischen Akademie der Wissenschaften 3, 18 (1925)

    Google Scholar 

  96. W. Pauli, The connection between spin and statistics. Phys. Rev. 58, 716 (1940)

    ADS  Google Scholar 

  97. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2001)

    Google Scholar 

  98. J.T.M. Walraven, Thermodynamic and Collisional Properties of Trapped Atomic Gases. Lecture Notes of the Ecole de Physique des Houches (2008)

    Google Scholar 

  99. D.A. Steck, Rubidium 87 D Line Data (2003), http://steck.us/alkalidata

  100. N.N. Bogoliubov, On the theory of superfluidity. J. Phys. (USSR) 11, 4–2 (1947)

    MathSciNet  Google Scholar 

  101. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    ADS  Google Scholar 

  102. E.P. Gross, Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961)

    MATH  Google Scholar 

  103. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646 (1961)

    Google Scholar 

  104. T. Langen, Addressing of ultracold atoms in optical lattices. Diplomarbeit (Johannes Gutenberg-Universität Mainz, 2008)

    Google Scholar 

  105. W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comp. Phys. 187, 318–342 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  106. N. Tammuz, R.P. Smith, R.L.D. Campbell, S. Beattie, S. Moulder, J. Dalibard, Z. Hadzibabic, Can a Bose gas be saturated? Phys. Rev. Lett. 106, 230401 (2011)

    ADS  Google Scholar 

  107. G. Baym, C.J. Pethick, Ground-state properties of magnetically trapped Bose-condensed Rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996)

    ADS  Google Scholar 

  108. P. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley New York, 1989)

    Google Scholar 

  109. S. Stringari, Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996)

    ADS  Google Scholar 

  110. O. Penrose, L. Onsager, Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    ADS  MATH  Google Scholar 

  111. C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X.Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid. Nat. Phys. 776–780 (2011)

    Google Scholar 

  112. M. Dressel, A. Schwartz, G. Grüner, L. Degiorgi, Deviations from Drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF\({)}_{2}\)P\({\rm {F}}_{6}\). Phys. Rev. Lett. 77, 398–401 (1996)

    ADS  Google Scholar 

  113. Y. Jompol, C.J.B. Ford, J.P. Griffiths, I. Farrer, G.A.C. Jones, D. Anderson, D.A. Ritchie, T.W. Silk, A.J. Schofield, Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597–601 (2009)

    ADS  Google Scholar 

  114. P. Segovia, D. Purdie, M. Hengsberger, Y. Baer, Observation of spin and charge collective modes in one-dimensional metallic chains. Nature 402, 504–507 (1999)

    ADS  Google Scholar 

  115. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  116. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    ADS  Google Scholar 

  117. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999)

    ADS  Google Scholar 

  118. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    ADS  Google Scholar 

  119. X.G. Wen, Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)

    ADS  Google Scholar 

  120. A.M. Chang, L.N. Pfeiffer, K.W. West, Observation of chiral luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996)

    ADS  Google Scholar 

  121. J.G. Bednorz, K.A. Müller, Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    ADS  Google Scholar 

  122. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Superconductivity in two-dimensional CoO\({}_2\) layers. Nature 422, 53–55 (2003)

    ADS  Google Scholar 

  123. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    ADS  Google Scholar 

  124. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    ADS  Google Scholar 

  125. P.C. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)

    ADS  Google Scholar 

  126. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

    ADS  Google Scholar 

  127. D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, Low-dimensional trapped gases. J. Phys. IV France 116, 5–44 (2004)

    Google Scholar 

  128. M. Olshanii, Atomic scattering in the presence of an external confinement. Phys. Rev. Lett. 81, 938–941 (1998)

    ADS  Google Scholar 

  129. E. Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 104, 153203 (2010)

    Google Scholar 

  130. H. Bethe, Zur Theorie der Metalle. Z. Phys. 71, 205–226 (1931)

    Google Scholar 

  131. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516 (1960)

    ADS  MATH  MathSciNet  Google Scholar 

  132. E.H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev. 130, 1616–1624 (1963)

    Google Scholar 

  133. M. Rigol, Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009)

    ADS  Google Scholar 

  134. V.I. Arnol’d, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer, 1989)

    Google Scholar 

  135. J.-S. Caux, J. Mossel, Remarks on the notion of quantum integrability. J. Stat. Mech. Theor. Exp. 2011, P02023 (2011)

    Google Scholar 

  136. B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems (World Scientific, 2004)

    Google Scholar 

  137. K. Kheruntsyan, D. Gangardt, P. Drummond, G. Shlyapnikov, Pair correlations in a finite-temperature 1D Bose gas. Phys. Rev. Lett. 91, 040403 (2003)

    ADS  Google Scholar 

  138. A. Imambekov, I.E. Mazets, D.S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, J. Schmiedmayer, Density ripples in expanding low-dimensional gases as a probe of correlations. Phys. Rev. A 80, 033604 (2009)

    ADS  Google Scholar 

  139. S. Manz, Density correlations of expanding one-dimensional Bose gases. Ph.D. thesis (Vienna University of Technology, 2011)

    Google Scholar 

  140. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, vol. 9 (Pergamon, 1980)

    Google Scholar 

  141. S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theo. Phys. 5, 544–569 (1950)

    ADS  MathSciNet  Google Scholar 

  142. J.M. Luttinger, An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154–1162 (1963)

    ADS  MathSciNet  Google Scholar 

  143. D.C. Mattis, E.H. Lieb, Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)

    ADS  MathSciNet  Google Scholar 

  144. F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981)

    ADS  Google Scholar 

  145. V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Electron liquids and solids in one dimension. Nature 464, 209–216 (2010)

    ADS  Google Scholar 

  146. O.M. Auslaender, A. Yacoby, R. de Picciotto, K.W. Baldwin, L.N. Pfeiffer, K.W. West, Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002)

    ADS  Google Scholar 

  147. C. Kim, A.Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki, S. Uchida, T. Tohyama, S. Maekawa, Observation of spin-charge separation in one-dimensional SrCuO\({}_2\). Phys. Rev. Lett. 77, 4054 (1996)

    ADS  Google Scholar 

  148. R. Claessen, M. Sing, U. Schwingenschlögl, P. Blaha, M. Dressel, C.S. Jacobsen, Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. Lett. 88, 096402 (2002)

    ADS  Google Scholar 

  149. H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake et al., Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003)

    Google Scholar 

  150. H. Monien, M. Linn, N. Elstner, Trapped one-dimensional Bose gas as a Luttinger liquid. Phys. Rev. A 58, R3395 (1998)

    ADS  Google Scholar 

  151. C. Mora, Y. Castin, Extension of Bogoliubov theory to quasicondensates. Phys. Rev. A 67 (2003)

    Google Scholar 

  152. Y. Castin, Simple theoretical tools for low dimension Bose gases. J. Phys. IV (Proceedings) 116, 89–132 (2004)

    Google Scholar 

  153. N.K. Whitlock, I. Bouchoule, Relative phase fluctuations of two coupled one-dimensional condensates. Phys. Rev. A 68, 053609 (2003)

    ADS  Google Scholar 

  154. D.M. Gangardt, G.V. Shlyapnikov, Stability and phase coherence of trapped 1D Bose gases. Phys. Rev. Lett. 90, 010401 (2003)

    ADS  Google Scholar 

  155. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (U.S, Department of Commerce, 1964)

    Google Scholar 

  156. F. Gerbier, Quasi-1D Bose-Einstein condensates in the dimensional crossover regime. Eur. Phys. Lett. 66, 771–777 (2004)

    ADS  Google Scholar 

  157. J.N. Fuchs, X. Leyronas, R. Combescot, Hydrodynamic modes of a one-dimensional trapped Bose gas. Phys. Rev. A 68, 043610 (2003)

    ADS  Google Scholar 

  158. A. Muñoz Mateo, V. Delgado, Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates. Phys. Rev. A 77, 013617 (2008)

    Google Scholar 

  159. T. Betz, Phase correlations of coupled one-dimensional Bose gases. Ph.D. thesis (Vienna University of Technology, 2011)

    Google Scholar 

  160. J. Armijo, T. Jacqmin, K. Kheruntsyan, I. Bouchoule, Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions. Phys. Rev. A 83, 021605 (2011)

    ADS  Google Scholar 

  161. H.-P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys. Rev. Lett. 105, 015301 (2010)

    ADS  Google Scholar 

  162. T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, G. Kazakov, I.E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, J. Schmiedmayer, Two-point phase correlations of a one-dimensional bosonic Josephson junction. Phys. Rev. Lett. 106, 020407 (2011)

    ADS  Google Scholar 

  163. D.T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54, 2084–2091 (1996)

    ADS  MathSciNet  Google Scholar 

  164. S. Hofferberth, Coherent Manipulation of Bose-Einstein condensates with radio-frequency adiabatic potentials on atom chips. Ph.D. thesis (University of Heidelberg, 2007)

    Google Scholar 

  165. T. Berrada, PhD Thesis (Vienna University of Technology, 2014)

    Google Scholar 

  166. S.P. Cockburn, D. Gallucci, N.P. Proukakis, Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation. Phys. Rev. A 84, 023613 (2011)

    ADS  Google Scholar 

  167. P. Grišins, I.E. Mazets, Metropolis-Hastings thermal state sampling for numerical simulations of Bose-Einstein condensates. Comp. Phys. Comm. 185(7), 2014

    Google Scholar 

  168. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Taylor and Walton, 1845)

    Google Scholar 

  169. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, 1997)

    Google Scholar 

  170. C. Davisson, L.H. Germer, Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927)

    ADS  Google Scholar 

  171. H. Rauch, W. Treimer, U. Bonse, Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974)

    ADS  Google Scholar 

  172. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard, An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)

    ADS  Google Scholar 

  173. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Wave-particle duality of C\({}_{60}\) molecules. Nature 401, 680–682 (1999)

    ADS  Google Scholar 

  174. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation of interference between two bose condensates. Science 275, 637 (1997)

    Google Scholar 

  175. A. Imambekov, V. Gritsev, E. Demler, Ultracold Fermi gases, Proc. Internat. School Phys. Enrico Fermi, (Fundamental noise in matter interferometers (IOS Press, Amsterdam, The Netherlands, 2006), p. 2007

    Google Scholar 

  176. J. Javanainen, S.M. Yoo, Quantum phase of a Bose-Einstein condensate with an arbitrary number of atoms. Phys. Rev. Lett. 76, 161–164 (1996)

    ADS  Google Scholar 

  177. Y. Castin, Bose-Einstein Condensates in Atomic Gases: Simple Theoretical Results. Lecture Notes of Les Houches Summer School (2001)

    Google Scholar 

  178. S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, J. Schmiedmayer, Probing quantum and thermal noise in an interacting many-body system. Nat. Phys. 4, 489–495 (2008)

    Google Scholar 

  179. R. Bistritzer, E. Altman, Intrinsic dephasing in one-dimensional ultracold atom interferometers. Proc. Natl. Acad. Sci. 104, 9955 (2007)

    ADS  Google Scholar 

  180. M. Lewenstein, L. You, Quantum phase diffusion of a Bose-Einstein condensate. Phys. Rev. Lett. 77, 3489–3493 (1996)

    ADS  Google Scholar 

  181. Y. Shin, M. Saba, T.A. Pasquini, W. Ketterle, D.E. Pritchard, A.E. Leanhardt, Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2004)

    ADS  Google Scholar 

  182. A. Polkovnikov, E. Altman, E. Demler, Interference between independent fluctuating condensates. Proc. Natl. Acad. Sci. 103, 6125–6129 (2006)

    ADS  Google Scholar 

  183. R. Hanbury-Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    ADS  Google Scholar 

  184. R. Glauber, Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963)

    ADS  MathSciNet  Google Scholar 

  185. T. Jeltes, J.M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, C.I. Westbrook, Comparison of the Hanbury Brown-Twiss effect for bosons and fermions. Nature 445, 402–405 (2007)

    ADS  Google Scholar 

  186. A. Perrin, R. Bucker, S. Manz, T. Betz, C. Koller, T. Plisson, T. Schumm, J. Schmiedmayer, Hanbury Brown and Twiss correlations across the Bose-Einstein condensation threshold. Nat. Phys. 8, 195–198 (2012)

    Google Scholar 

  187. L. Saminadayar, D. Glattli, Y. Jin, B. Etienne, Observation of the e/3 fractionally charged laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997)

    ADS  Google Scholar 

  188. A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005)

    Google Scholar 

  189. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, I. Bloch, Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481 (2005)

    ADS  Google Scholar 

  190. T. Rom, Th Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, I. Bloch, Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733 (2006)

    ADS  Google Scholar 

  191. V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids. Nat. Phys. 2, 705–709 (2006)

    Google Scholar 

  192. A. Imambekov, V. Gritsev, E. Demler, Mapping of Coulomb gases and sine-Gordon models to statistics of random surfaces. Phys. Rev. A 77, 063606 (2008)

    ADS  Google Scholar 

  193. C.S. Gerving, T.M. Hoang, B.J. Land, M. Anquez, C.D. Hamley, M.S. Chapman, Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose-Einstein condensate. Nat. Commun. 3, 1169 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Langen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langen, T. (2015). Introduction to One-Dimensional Bose Gases. In: Non-equilibrium Dynamics of One-Dimensional Bose Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18564-4_1

Download citation

Publish with us

Policies and ethics