Skip to main content

Effects of Mild Stresses Applied in Adults on Aging and Longevity

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

  • 1081 Accesses

Abstract

It is now known that some mild stresses can have positive effects on longevity, aging, and resistance to severe stresses in several species, and particularly in Drosophila melanogaster flies. This chapter describes the effects of some mild stresses (heat, cold, hypergravity, oxidative stress, fasting, and so on) in flies and the possible mechanisms of these mild stresses (antioxidant enzymes, heat shock proteins, NF-κB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antosh M, Fox D, Hasselbacher T, Lanou R, Neretti N, Cooper LN (2014) Drosophila melanogaster show a threshold effect in response to radiation. Dose-Response 12(4):551–581

    Google Scholar 

  • Ayar A, Uysal H, Altun D (2010) The effects of cold shock on the longevity in Oregon R wild and vestigial mutant of Drosophila melanogaster (Diptera: Drosophilidae). Ekoloji 74:38–44

    Article  Google Scholar 

  • Bertrand HA, Herlihy JT, Ikeno Y, Yu BP (1999) Dietary restriction. In: Yu BP (ed) Methods in aging research. CRC, Boca Raton, pp. 271–300

    Google Scholar 

  • Biro S, Masuda A, Kihara T, Tei C (2003) Clinical implications of thermal therapy in lifestyle-related diseases. Exp Biol Med 228:1245–1249

    CAS  Google Scholar 

  • Bojados M, Jamon M (2014) The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice. Behav Brain Res 264:64–73

    Article  PubMed  Google Scholar 

  • Borzelecca JF (2000) Paracelsus: herald of modern toxicology. Toxicol Sci 53:2–4

    Article  Google Scholar 

  • Brown AE, Baumbach J, Cook PE, Ligoxygakis P (2009) Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections. PLoS ONE 4(2):e4490

    Article  PubMed Central  PubMed  Google Scholar 

  • Bubliy OA, Kristensen TN, Kellermann V, Loeschcke V (2012) Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct Ecol 26:245–253

    Article  Google Scholar 

  • Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2008) What is hormesis? In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging. Applying hormesis in aging research and therapy. Springer, Dordrecht, pp 5–19

    Chapter  Google Scholar 

  • Calabrese EJ (2013) Hormetic mechanisms. Crit Rev Toxicol 43:580–606

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2014) Hormesis and risk assessment. In: Rattan SIS, Le Bourg E (eds) Hormesis in health and disease. CRC Press, Boca Raton, pp 339–355

    Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colinet H, Lee SF, Hoffmann A (2010a) Temporal expression of heat-shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J 277:174–185

    Article  CAS  PubMed  Google Scholar 

  • Colinet H, Lee SF, Hoffmann A (2010b) Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J Exp Biol 213:4146–4150

    Article  CAS  PubMed  Google Scholar 

  • Cypser JR, Johnson TE (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol Biol Sci 57A:B109–B114

    Article  Google Scholar 

  • Cypser JR, Johnson TE (2003) Hormesis in Caenorhabditis elegans dauer-defective mutants. Biogerontology 4:203–214

    Article  CAS  PubMed  Google Scholar 

  • Czajka MC, Lee RE (1990) A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J Exp Biol 148:245–254

    CAS  PubMed  Google Scholar 

  • Dahlgaard J, Loeschcke V, Michalak P, Justesen J (1998) Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol 12:786–793

    Article  Google Scholar 

  • Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM (2011) Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Geront 46:819–826

    Article  CAS  Google Scholar 

  • Economos AC, Miquel J, Ballard RC, Blemden M, Lindseth KA, Fleming J, Philpott DE, Oyama J (1982) Effects of simulated increased gravity on the rate of aging of rats. Implications for the rate of living theory of aging. Arch Gerontol Geriatr 1:349–363

    Article  CAS  PubMed  Google Scholar 

  • Everitt AV, Rattan SIS, Le Couteur DG, de Cabo R (eds) (2010) Calorie restriction, aging and longevity. Springer, Dordrecht

    Google Scholar 

  • Foley E, O’Farrell PH (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 17:115–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frolkis VV (1982) Aging and life-prolonging processes. Springer, Heidelberg

    Book  Google Scholar 

  • Ganesan S, Aggarwal K, Paquette N, Silverman N (2011) NF-κB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Cur Top Microbiol 349:25–60

    CAS  Google Scholar 

  • Hercus MJ, Loeschcke V, Rattan SIS (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156

    Article  CAS  PubMed  Google Scholar 

  • Jamon M, Serradj N (2009) Ground-based researches on the effects of altered gravity on mice development. Microgravity Sci Technol 21:327–337

    Article  Google Scholar 

  • Jensen D, Overgaard J, Sørensen JG (2007) The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186

    Article  CAS  PubMed  Google Scholar 

  • Kampkötter A, Nkwonkam CG, Zurawski RF, Timpel C, Chovolou Y, Wätjen W, Kahl R (2007) Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch Toxicol 81:849–858

    Article  PubMed  Google Scholar 

  • Karunanithi S, Barclay JW, Robertson RM, Brown IR, Atwood HL (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J Neurosci 19:4360–4369

    CAS  PubMed  Google Scholar 

  • Kelty JD, Lee RE (1999) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726

    Article  CAS  PubMed  Google Scholar 

  • Kelty JD, Lee RE (2001) Rapid cold-hardening of Drosophila melanogaster (diptera: drosophilidae) during ecologically based thermoperiodic cycles. J Exp Biol 204:1659–1666

    CAS  PubMed  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol Biol Sci 52A:B48–B52

    Article  Google Scholar 

  • Kita S, Shibata S, Kim H, Otsubo A, Ito M, Iwasaki KI (2006) Dose-dependent effects of hypergravity on body mass in mature rats. Aviat Space Environ Med 77:842–845

    PubMed  Google Scholar 

  • Klose MK, Chu D, Xiao C, Seroude L, Robertson RM (2005) Heat-shock-mediated thermoprotection of larval locomotion compromised by ubiquitous overexpression of Hsp70 in Drosophila melanogaster. J Neurophysiol 94:3563–3572

    Article  CAS  PubMed  Google Scholar 

  • Krebs RA, Loeschcke V (1994a) Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J Evol Biol 7:39–49

    Article  Google Scholar 

  • Krebs RA, Loeschcke V (1994b) Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Funct Ecol 8:730–737

    Article  Google Scholar 

  • Kristensen TN, Sørensen JG, Loeschcke V (2003) Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Genet 82:89–94

    Article  CAS  PubMed  Google Scholar 

  • Kuether K, Arking R (1999) Drosophila selected for extended longevity are more sensitive to heat shock. Age 22:175–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lagisz K, Hector L, Nakagawa S (2013) Life extension after heat shock exposure: assessing meta- analytic evidence for hormesis. Ageing Res Rev 12:653–660

    Article  PubMed  Google Scholar 

  • Lavitrano M, Smolenski RT, Musumeci A, Maccherini M, Slominska E, Di Florio E, Bracco A, Mancini A, Stassi G, Patti M, Giovannoni R, Froio A, Simeone F, Forni M, Bacci ML, D’Alise G, Cozzi E, Otterbein LE, Yacoub MH, Bach FH, Calise F (2004) Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J 18:1093–1095

    CAS  PubMed  Google Scholar 

  • Le Bourg E (2005) Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age. Naturwiss 92:293–296

    Article  CAS  PubMed  Google Scholar 

  • Le Bourg E (2007a) Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology 8:431–444

    Article  PubMed  Google Scholar 

  • Le Bourg E (2007b) Hormetic effects on longevity of hydrogen peroxide in Drosophila melanogaster flies living on a poorly nutritious medium. Biogerontology 8:327–344

    Article  PubMed  Google Scholar 

  • Le Bourg E (2008) Three mild stresses known to increase longevity in Drosophila melanogaster flies do not increase resistance to oxidative stress. Am J Pharmacol Toxicol 3:134–140

    Article  Google Scholar 

  • Le Bourg E (2009) Hormesis, aging and longevity. Biochim Biophys Acta 1790:1030–1039

    Article  PubMed  Google Scholar 

  • Le Bourg E (2010a) Combined effects of suppressing live yeast and of a cold pretreatment on longevity, aging and resistance to several stresses in Drosophila melanogaster. Biogerontology 11:245–254

    Article  PubMed  Google Scholar 

  • Le Bourg E (2010b) Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Res Rev 9:289–297

    Article  PubMed  Google Scholar 

  • Le Bourg E (2011a) A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12:185–193

    Article  PubMed  Google Scholar 

  • Le Bourg E (2011b) The NF-kB like factor DIF has weaker effects on Drosophila melanogaster immune defenses than previously thought. J Comp Physiol B 181:741–750

    Article  PubMed  Google Scholar 

  • Le Bourg E (2012) Combined effects of two mild stresses (cold and hypergravity) on longevity, behavioral aging, and resistance to severe stresses in Drosophila melanogaster. Biogerontology 13:313–328

    Article  PubMed  Google Scholar 

  • Le Bourg E (2013) Fasting can protect young and middle-aged Drosophila melanogaster flies against a severe cold stress. Biogerontology 14:513–529

    Article  CAS  PubMed  Google Scholar 

  • Le Bourg E, Fournier D (2004) Is lifespan extension accompanied by improved antioxidant defences? A study of superoxide dismutase and catalase in Drosophila melanogaster flies that lived in hypergravity at young age. Biogerontology 5:261–266

    Article  PubMed  Google Scholar 

  • Le Bourg E, Grimal A, Fresquet N, Lints FA (1995) Spontaneous locomotor activity of Drosophila melanogaster flies at various gravity levels (0 g, 1 g, 1.8 g) during parabolic flights. Behav Proc 34:175–184

    Article  Google Scholar 

  • Le Bourg E, Malod K, Massou I (2012) The NF-κB-like factor DIF could explain some positive effects of a mild stress on longevity, behavioral aging, and resistance to strong stresses in Drosophila melanogaster. Biogerontology 13:455–465

    Google Scholar 

  • Le Bourg E, Massou I, Gobert V (2009) Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster. Biogerontology 10:613–625

    Article  PubMed  Google Scholar 

  • Le Bourg E, Minois N (1997) Increased longevity and resistance to heat shock in Drosophila melanogaster flies exposed to hypergravity. C R Acad Sci Paris 320:215–221

    Article  PubMed  Google Scholar 

  • Le Bourg E, Minois N (1999) A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Exp Geront 34:157–172

    Article  Google Scholar 

  • Le Bourg E, Minois N, Bullens P, Baret P (2000) A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 1:145–155

    Article  PubMed  Google Scholar 

  • Le Bourg E, Rattan SIS (eds) (2008) Mild stress and healthy aging. Applying hormesis in aging research and therapy, Springer, Dordrecht

    Google Scholar 

  • Le Bourg E, Toffin E, Massé A (2004) Male Drosophila melanogaster flies exposed to hypergravity at young age are protected against a non-lethal heat shock at middle age but not against behavioral impairments due to this shock. Biogerontology 5:431–443

    Article  PubMed  Google Scholar 

  • Le Bourg E, Valenti P, Lucchetta P, Payre F (2001) Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2:155–164

    Article  PubMed  Google Scholar 

  • Le Bourg E, Valenti P, Payre F (2002) Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology 3:355–364

    Article  PubMed  Google Scholar 

  • Lints FA, Bullens P, Le Bourg E (1993) Hypergravity and aging in Drosophila melanogaster: 7. New longevity data. Exp Geront 28:611–615

    Article  CAS  Google Scholar 

  • Marshall KE, Sinclair BJ (2012) The impacts of repeated cold exposure on insects. J Exp Biol 215:1607–1613

    Article  PubMed  Google Scholar 

  • McClure CD, Zhong W, Hunt VL, Chapman FM, Hill FV, Priest NK (2014) Hormesis results in trade-offs with immunity. Evolution 68:2225–2233

    PubMed Central  PubMed  Google Scholar 

  • Megory E, Oyama J (1984) Hypergravity effects on litter size, nursing activity, prolactin, TSH, T3, and T4 in the rat. Aviat Space Environ Med 55:1129–1135

    CAS  PubMed  Google Scholar 

  • Minois N (2000) Longevity and aging: beneficial effects of exposure to mild stress. Biogeront 1:15–29

    Article  CAS  Google Scholar 

  • Minois N (2001) Resistance to stress as a function of age in transgenic Drosophila melanogaster overexpressing hsp70. J Insect Physiol 47:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Guinaudy MJ, Payre F, Le Bourg E (1999) HSP70 induction may explain the long-lasting resistance to heat of Drosophila melanogaster having lived in hypergravity. Mech Ageing Dev 109:65–77

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Khazaeli AA, Curtsinger JW (2001) Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Geront 36:1137–1153

    Article  CAS  Google Scholar 

  • Minois N, Le Bourg E (1999) Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mech Ageing Dev 109:53–64

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Seminars Cell Develop Biol 14:291–299

    Article  CAS  Google Scholar 

  • Moskalev A, Shaposhnikov M (2011) Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging (Albany NY) 3:391–394

    CAS  Google Scholar 

  • Nakagawa S, Lagisz M, Hector KL, Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11:401–409

    Article  CAS  PubMed  Google Scholar 

  • Oyama J (1982) Metabolic effects of hypergravity on experimental animals. In: Miquel J, Economos AC (eds) Space gerontology, vol 2248. Nasa Conference Publication, pp 37–51

    Google Scholar 

  • Pickering AM, Vojtovich L, Tower J, Davies KJA (2013) Oxidative stress adaptation with acute, chronic, and repeated stress. Free Rad Biol Med 55:109–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitts GC, Oyama J (1979) Rat growth during chronic centrifugation. In: Holmquist R (ed) COSPAR life sciences and space research, vol 17, pp 225–229

    Google Scholar 

  • Puig O, Mattila J (2011) Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid Redox Signal 14:635–647

    Article  CAS  PubMed  Google Scholar 

  • Rako L, Hoffmann AA (2006) Complexity of the cold acclimation response in Drosophila melanogaster. J Insect Physiol 52:94–104

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS, Le Bourg E (eds) (2014) Hormesis in health and disease. CRC Press, Boca Raton

    Google Scholar 

  • Sacher GA (1977) Life table modification and life prolongation. In: Finch CE, Hayflick L (eds) Handbook of the Biology of Aging. Van Nostrand Reinhold Company, New York, pp 582–638

    Google Scholar 

  • Sarup P, Sørensen JG, Loeschcke V (2014) The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp Geront 50:34–39

    Article  CAS  Google Scholar 

  • Sejerkilde M, Sørensen JG, Loeschcke V (2003) Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J Insect Physiol 49:719–726

    Article  CAS  PubMed  Google Scholar 

  • Sondag HNPM, de Jong HAA, Oosterveld WJ (1997) Altered behaviour in hamsters conceived and born in hypergravity. Brain Res Bull 43:289–294

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Geront 42:1123–1129

    Article  Google Scholar 

  • Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32:159–221

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR (2012) Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev 11:254–270

    Article  PubMed Central  PubMed  Google Scholar 

  • Thayer KA, Melnick R, Burns K, Davis D, Huff J (2005) Fundamental flaws of hormesis for public health decisions. Environ Health Perspect 113:1271–1276

    Article  PubMed Central  PubMed  Google Scholar 

  • Tower J (2011) Heat shock proteins and Drosophila aging. Exp Geront 46:355–362

    Article  CAS  Google Scholar 

  • Vaiserman AM (2008) Irradiation and hormesis. In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging. Applying hormesis in aging research and therapy. Springer, Dordrecht, pp 21–41

    Chapter  Google Scholar 

  • Vigne P, Tauc M, Frelin C (2009) Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries. PLoS ONE 4:e5422

    Article  PubMed Central  PubMed  Google Scholar 

  • Wade CE, Moran MM, Oyama J (2002) Resting energy expenditure of rats acclimated to hypergravity. Aviat Space Environ Med 73:859–864

    PubMed  Google Scholar 

  • Zhong JF, Wang SP, Shi XQ, Mu LL, Li GQ (2010) Hydrogen sulfide exposure increases desiccation tolerance in Drosophila melanogaster. J Insect Physiol 56:1777–1782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Le Bourg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Bourg, É. (2015). Effects of Mild Stresses Applied in Adults on Aging and Longevity. In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_14

Download citation

Publish with us

Policies and ethics