Skip to main content

Variational Approaches and Methods for Dissipative Material Models with Multiple Scales

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

In a first part we consider evolutionary systems given as generalized gradient systems and discuss various variational principles that can be used to construct solutions for a given system or to derive the limit dynamics for multiscale problems via the theory of evolutionary Gamma-convergence. On the one hand we consider a family of viscous gradient system with quadratic dissipation potentials and a wiggly energy landscape that converge to a rate-independent system. On the other hand we show how the concept of Balanced-Viscosity solution arise in the vanishing-viscosity limit.

As applications we discuss, first, the evolution of laminate microstructures in finite-strain elastoplasticity and, second, a two-phase model for shape-memory materials, where H-measures are used to construct the mutual recovery sequences needed in the existence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  2. Arnrich, S., Mielke, A., Peletier, M.A., Savaré, G., Veneroni, M.: Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction. Calc. Var. Part. Diff. Eqns. 44, 419–454 (2012)

    Article  MATH  Google Scholar 

  3. Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg. 193, 5143–5175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brézis, H., Ekeland, I.: Un prinicpe varationnel associeé à certaines équations paraboliques. Compt. Rendues Acad. Sci. Paris 282, 971–974, 1197–1198 (1976)

    Google Scholar 

  5. Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Z. angew. Math. Mech (ZAMM) 89(10), 792–809 (2009)

    Article  MATH  Google Scholar 

  6. Biot, M.A.: Variational principles in irreversible thermodynamics with applications to viscoelasticity. Phys. Review 97(6), 1463–1469 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  7. Braides, A.: Γ-Convergence for Beginners. Oxford University Press (2002)

    Google Scholar 

  8. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discr. Cont. Dynam. Systems Ser. S 6, 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Meth. Appl. Sci. (M3AS) 23, 2111–2128 (2013)

    Google Scholar 

  10. Carstensen, C., Hackl, K., Mielke, A.: Non–convex potentials and microstructures in finite–strain plasticity. Proc. Royal Soc. London Ser. A 458(2018), 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Conti, S., Lenz, M., Rumpf, M.: Hysteresis in magnetic shape memory composites: modeling and limulation. J. Mech. Physics Solids (submitted, 2015)

    Google Scholar 

  12. Conti, S., Ortiz, M.: Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Physics Solids 56(5), 1885–1904 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carstensen, C., Plecháč, P.: Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. M2AN Math. Model. Numer. Anal. 35(5), 865–878 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal. 178, 125–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161(3), 181–204 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176, 165–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin. 27(1), 257–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur (8) 68(3), 180–187 (1980)

    MATH  MathSciNet  Google Scholar 

  19. Efendiev, M., Mielke, A.: On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13(1), 151–167 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Fenchel, W.: On conjugate convex functions. Canadian J. Math. 1, 73–77 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  21. Francfort, G., Garroni, A.: A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal. 182, 125–152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Garroni, A., Larsen, C.J.: Threshold-based quasi-static brittle damage evolution. Arch. Rational Mech. Anal. 194(2), 585–609 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giacomini, A., Musesti, A.: Two-scale homogenization for a model in strain gradient plasticity. ESAIM Control Optim. Calc. Var. 17(4), 1035–1065 (2011), doi:10.1051/cocv/2010036

    Google Scholar 

  24. Hanke, H.: Homogenization in gradient plasticity. Math. Models Meth. Appl. Sci (M3AS) 21(8), 1651–1684 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Heinz, S.: On the structure of the quasiconvex hull in planar elasticity. Calc. Var. Part. Diff. Eqns. 50, 481–489 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Heinz, S.: Quasiconvexity equals lamination convexity for isotropic sets of 2x2 matrices. Adv. Calc. Var. 8, 43–53 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hackl, K., Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464, 117–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hackl, K., Heinz, S., Mielke, A.: A model for the evolution of laminates in finite-strain elastoplasticity. Z. Angew. Math. Mech (ZAMM) 92(11-12), 888–909 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Heinz and M. Kružík. Computations of quasiconvex hulls of isotropic sets. WIAS preprint no. 2049 (2014)

    Google Scholar 

  30. Heinz, S., Mielke, A.: Analysis and numerics of a phase-transformation model (in preparation, 2015)

    Google Scholar 

  31. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc. 108(520), x+90 (1994)

    MathSciNet  Google Scholar 

  32. James, R.D.: Hysteresis in phase transformations. In: ICIAM 1995, Hamburg. Math. Res., vol. 87, pp. 135–154. Akademie Verlag, Berlin (1996)

    Google Scholar 

  33. Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23(1), 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I. Springer, New York (1972)

    Book  Google Scholar 

  36. Liero, M., Mielke, A.: An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Meth. Appl. Sci (M3AS) 21(9), 1961–1986 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Liero, M., Mielke, A., Peletier, M.A., Renger, D.R.M.: On the microscopic origin of generalized gradient structures (in preparation, 2015)

    Google Scholar 

  38. Larsen, C., Ortiz, M., Richardson, C.: Fracture paths from front kinetics: relaxation and rate-independence. Arch. Rational Mech. Anal.

    Google Scholar 

  39. Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Engrg. 193(48-51), 5095–5127 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mielke, A.: Existence theory for finite-strain crystal plasticity with gradient regularization. In: Hackl, K. (ed.) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Proceedings of the IUTAM Symposium on Variational Concepts, Bochum, Germany, September 22-26. Springer (2008)

    Google Scholar 

  41. Mielke, A.: Complete-damage evolution based on energies and stresses. Discr. Cont. Dynam. Systems Ser. S 4(2), 423–439 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mielke, A.: Differential, energetic, and metric formulations for rate-independent processes. In: Ambrosio, L., Savaré, G. (eds.) Nonlinear PDE’s and Applications, Cetraro, Italy. C.I.M.E. Summer School, Lect. Notes Math., vol. 2028, pp. 87–170. Springer (2028)

    Google Scholar 

  43. Mielke, A.: Emergence of rate-independent dissipation from viscous systems with wiggly energies. Contin. Mech. Thermodyn. 24(4), 591–606 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mielke, A.: On evolutionary Γ-convergence for gradient systems. WIAS Preprint 1915, 2014. To appear in Proc. Summer School in Twente University (June 2012)

    Google Scholar 

  45. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19(3), 221–248 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories of dissipative systems. ESAIM Control Optim. Calc. Var. 14, 494–516 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Mielke, A., Ortner, C., Şengül, Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Analysis 46(2), 1317–1347 (2014)

    Article  MATH  Google Scholar 

  48. Mielke, A., Peletier, M., Renger, M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Analysis 41(4), 1293–1327 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Springer (2015)

    Google Scholar 

  50. Mielke, A., Roubíček, T., Stefanelli, U.: Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Eqns. 31, 387–416 (2008)

    Article  MATH  Google Scholar 

  51. Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discr. Cont. Dynam. Systems Ser. A 25(2), 585–615 (2009)

    Article  MATH  Google Scholar 

  52. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mielke, A., Rossi, R., Savaré, G.: Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Europ. Math. Soc. (to appear, 2014), http://arxiv.org/abs/1309.6291 WIAS preprint (1845)

  54. Mielke, A., Rossi, R., Savaré, G.: Balanced-Viscosity solutions for multi-rate systems. J. Physics, Conf. Series (2014); WIAS Preprint (2001) (submitted)

    Google Scholar 

  55. Mielke, A., Rossi, R., Savaré, G.: Existence results for viscoplasticity at finite strain (in preparation, 2015)

    Google Scholar 

  56. Mielke, A., Stefanelli, U.: Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var. 17, 52–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mielke, A., Stefanelli, U.: Linearized plasticity is the evolutionary Γ-limit of finite plasticity. J. Europ. Math. Soc. 15(3), 923–948 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  58. Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Analysis 39(2), 642–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal. 203(2), 577–619 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  60. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Mielke, A., Zelik, S.: On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci (5) XIII, 67–135 (2014)

    MathSciNet  Google Scholar 

  62. Nayroles, B.: Deux théorèmes de minimum pour certains systèmes dissipatifs. Compt. Rendues Acad. Sci. Paris 282, A1035–A1038 (1976)

    Google Scholar 

  63. Onsager, L.: Reciprocal relations in irreversible processes, I+II. Physical Review 37, 405–426, Part II, 38, 2265–2279 (1931)

    Google Scholar 

  64. Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  65. Puglisi, G., Truskinovsky, L.: Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids 50(2), 165–187 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  66. Puglisi, G., Truskinovsky, L.: Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53, 655–679 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  67. Rayleigh, L., Strutt, H.J.W.: Some general theorems relating to vibrations. Proc. London Math. Soc. s1-4, 357–368 (1871)

    Article  Google Scholar 

  68. Serfaty, S.: Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications. Discr. Cont. Dynam. Systems Ser. A 31(4), 1427–1451 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Comm. Pure Appl. Math. LVII, 1627–1672 (2004)

    Article  MathSciNet  Google Scholar 

  70. Stefanelli, U.: The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47(3), 1615–1642 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mielke, A. (2015). Variational Approaches and Methods for Dissipative Material Models with Multiple Scales. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics