Skip to main content

Rate-Independent versus Viscous Evolution of Laminate Microstructures in Finite Crystal Plasticity

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Abstract

In this chapter we investigate the variational modeling of the evolution of inelastic microstructures by the example of finite crystal plasticity with one active slip system. For this purpose we describe the microstructures by laminates of first order.We propose an analytical partial relaxation of an incompressible neo-Hookean energy formulation, keeping the internal variables and geometric microstructure parameters fixed, thus approximating the relaxed energy by an upper bound of the rank-one-convex hull. Based on the minimization of a Lagrange functional, consisting of the sum of rate of energy and dissipation potential, we derive an incremental strategy to model the time-continuous evolution of the laminate microstructure. Special attention is given to the three distinct cases of microstructure evolution, initiation, rotation, and continuous change. We compare a rate-independent approach with another one that employs viscous regularization which has certain advantages concerning the numerical implementation. Simple shear and tension/compression tests will be shown to demonstrate the differences between both approaches and to show the physical implications of the models introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 470(2169) (2014)

    Google Scholar 

  2. Boiger, W., Carstensen, C.: On the strong convergence of gradients in stabilised degenerate convex minimisation problems. SIAM J. Numer. Anal. 47(6), 4569–4580 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartels, S., Carstensen, C., Conti, S., Hackl, K., Hoppe, U., Orlando, A.: Relaxation and the computation of effective energies and microstructures in solid mechanics. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 197–224. Springer (2006)

    Google Scholar 

  4. Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Computer Methods in Applied Mechanics and Engineering 193(48-51), 5143–5175 (2004). Advances in Computational Plasticity

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhattacharya, K.: Microstructure of Martensite. Why it forms and how it gives rise to the shape-memory effect. Oxford University Press (2003)

    Google Scholar 

  6. Ball, J., James, R.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational models in crystal plasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 465(2106), 1735–1742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM Journal on Mathematical Analysis 43(5), 2337–2353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete and Continuous Dynamical Systems - Series S 6(1), 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen, C., Hackl, K., Hoppe, U., Orlando, A.: Computational microstructures in phase transition solids and finite-strain elastoplasticity. GAMM-Mitteilungen 29(2), 215–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R.Soc. London A458, 299–317 (2002)

    Article  MathSciNet  Google Scholar 

  12. Christian, J., Mahajan, S.: Deformation twinning. Progress in Materials Science 39(1-2), 1–157 (1995)

    Article  Google Scholar 

  13. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Archive for Rational Mechanics and Analysis 176(1), 103–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Canadinc, D., Sehitoglu, H., Maier, H., Chumlyakov, Y.: Strain hardening behavior of aluminum alloyed hadfield steel single crystals. Acta Materialia 53(6), 1831–1842 (2005)

    Article  Google Scholar 

  15. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plasticity. Cont. Mech. Thermodyn. 20, 275–301 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Rat. Mech. Anal. 178, 125–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46, 102–118 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dmitrieva, O., Dondl, P., Müller, S., Raabe, D.: Lamination microstructure in shear deformed copper single crystals. Acter Mater. 57, 3439–3449 (2009)

    Article  Google Scholar 

  19. Hackl, K., Fischer, F.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464(2089), 117–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hackl, K., Hoppe, U., Kochmann, D.M.: Variational modeling of microstructures in plasticity. In: Schröder, J., Hackl, K. (eds.) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol. 550, pp. 65–129. Springer Vienna (2014)

    Google Scholar 

  21. Hackl, K., Heinz, S., Mielke, A.: A model for the evolution of laminates in finite-strain elastoplasticity. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(11-12), 888–909 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hackl, K., Kochmann, D.: Relaxed potentials and evolution equations for inelastic microstructures. In: Theoretical, Computational and Modelling Aspects of Inelastic Media. Springer, Berlin (2008)

    Google Scholar 

  23. Hackl, K., Kochmann, D.: Time-continuous evolution of microstructures in finite plasticity. In: Variational Concepts with Applications to the Mechanics of Materials. Springer, Berlin (2009)

    Google Scholar 

  24. Hackl, K., Kochmann, D.: Time-continuous evolution of microstructures in finite plasticity. In: IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, vol. 21 (2010)

    Google Scholar 

  25. Hackl, K., Kochmann, D.: An incremental strategy for modeling laminate microstructures in finite plasticity–energy reduction, laminate orientation and cyclic behavior. In: Multiscale Methods in Computational Mechanics, pp. 117–134. Springer (2011)

    Google Scholar 

  26. Kochmann, D., Hackl, K.: Influence of hardening on the cyclic behavior of laminate microstructures in finite crystal plasticity. Technische Mechanik 30, 387–400 (2010)

    Google Scholar 

  27. Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mechanics and Thermodynamics 23, 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Solids Struct. 40, 1369–1391 (2003)

    Article  MATH  Google Scholar 

  29. Miehe, C., Gürses, E., Birkle, M.: A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int. J. Frac. 145, 245–259 (2007)

    Article  MATH  Google Scholar 

  30. Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). Springer, Berlin (2002)

    Book  Google Scholar 

  31. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Computer Methods in Applied Mechanics and Engineering 193(48-51), 5095–5127 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Miehe, C.: Variational gradient plasticity at finite strains. part i: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Computer Methods in Applied Mechanics and Engineering 268, 677–703 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Miehe, C., Lambrecht, M.: Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids. International Journal for Numerical Methods in Engineering 58(1), 1–41 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. Journal of Nonlinear Science 19(3), 221–248 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Miehe, C., Rosato, D., Frankenreiter, I.: Fast estimates of evolving orientation microstructures in textured bcc polycrystals at finite plastic strains. Acta Materialia 58(15), 4911–4922 (2010)

    Article  Google Scholar 

  38. Mielke, A., Stefanelli, U.: A discrete variational principle for rate-independent evolution. Advances in Calculus of Variations 1(4), 399–431 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yalcinkaya, T., Brekelmans, W., Geers, M.: Deformation patterning driven by rate dependent non-convex strain gradient plasticity. Journal of the Mechanics and Physics of Solids 59(1), 1–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Günther, C., Kochmann, D.M., Hackl, K. (2015). Rate-Independent versus Viscous Evolution of Laminate Microstructures in Finite Crystal Plasticity. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics