Skip to main content

Variational Modeling of Slip: From Crystal Plasticity to Geological Strata

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

Slip processes are soft modes of deformation, characteristic of a variety of layered materials. The layers can be at the atomic scale, as in the plastic deformation of crystalline lattices, or on a macroscopic scale, as in stacks of cards or sheets of paper and geological strata. The characteristic deformation processes involve sliding of the layers over one another, leading to a shear deformation with a specific orientation. If the forcing is not parallel to the layers, complex microstructures may form, which have a remarkable similarity over different systems and often consist of alternating shears of different sign. We review here recent results on the detailed analysis of slip processes in crystal plasticity based on the theory of relaxation, discuss the general variational framework for these microstructures, and compare with available experimental results in different systems. We then address the situation in which slip in several different directions may coexist in the same system, as frequently observed in plastically deformed crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, N., Conti, S., Dolzmann, G.: Infinite-order laminates in a model in crystal plasticity. Proc. Roy. Soc. Edinburgh A 139, 685–708 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. Preprint, arXiv:1402.0114 (2014)

    Google Scholar 

  3. Anguige, K., Dondl, P.W.: Energy estimates, relaxation, and existence for strain-gradient plasticity with cross-hardening. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 157–174. Springer, Heidelberg (2015)

    Google Scholar 

  4. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1976/1977)

    Google Scholar 

  5. Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg. 193(48-51), 5143–5175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Budd, C.J., Edmunds, R., Hunt, G.W.: A nonlinear model for parallel folding with friction. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2036), 2097–2119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Budiansky, B., Fleck, N.A.: Compressive kinking of fiber composites: A topical review. Appl. Mech. Rev. 47(6S), S246–S250 (1994)

    Google Scholar 

  8. Budiansky, B., Fleck, N., Amazigo, J.: On kink-band propagation in fiber composites. J. Mech. Phys. Solids 46(9), 1637–1653 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Analysis 100, 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  MATH  Google Scholar 

  11. Braides, A.: Γ-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  12. Carstensen, C.: Numerical analysis of microstructure. In: Theory and Numerics of Differential Equations (Durham 2000). Universitext, pp. 59–126. Springer, Berlin (2001)

    Chapter  Google Scholar 

  13. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plasticity. Cont. Mech. Thermod. 20, 275–301 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems (in preparation)

    Google Scholar 

  15. Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rat. Mech. Anal. (2014) (to appear)

    Google Scholar 

  16. Conti, S., Dolzmann, G.: Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions. Math. Models. Metods App. Sci. 24, 2929–2942 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Conti, S., DeSimone, A., Dolzmann, G.: Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational models in crystal plasticity. Proc. Roy. Soc. London A 465, 1735–1742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Disc. Cont. Dyn. Systems S 6, 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23, 2111–2128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Conti, S., Dolzmann, G., Müller, S.: The div-curl lemma for sequences whose divergence and curl are compact in W − 1,1. Comptes Rendus Math. 349, 175–178 (2011)

    Article  MATH  Google Scholar 

  23. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49(7), 1539–1568 (2001)

    Article  MATH  Google Scholar 

  24. Carstensen, C., Gallistl, D., Krämer, B.: Numerical algorithms for the simulation of finite plasticity with microstructures. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 1–30. Springer, Heidelberg (2015)

    Google Scholar 

  25. Conti, S., Garroni, A., Müller, S.: Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Rat. Mech. Anal. 199, 779–819 (2011)

    Article  MATH  Google Scholar 

  26. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103, 237–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006)

    Google Scholar 

  30. Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appliquees 90, 15–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178(1), 125–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Dacorogna, B.: Direct methods in the calculus of variations, vol. 78. Springer (2007)

    Google Scholar 

  33. DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161(3), 181–204 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dmitrieva, O., Dondl, P.W., Müller, S., Raabe, D.: Lamination microstructure in shear deformed copper single crystals. Acta Materialia 57(12), 3439–3449 (2009)

    Article  Google Scholar 

  35. Dal Maso, G.: An introduction to Γ-convergence. In: Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc., Boston (1993)

    Google Scholar 

  36. Dodwell, T.J., Peletier, M.A., Budd, C.J., Hunt, G.W.: Self-similar voiding solutions of a single layered model of folding rocks. SIAM J. Appl. Math. 72(1), 444–463 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dmitrieva, O., Raabe, D., Müller, S., Dondl, P.W.: Microstructure in plasticity, a comparison between theory and experiment. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 205–218. Springer, Heidelberg (2015)

    Google Scholar 

  38. Fleck, N.A.: Compressive failure of fiber composites. Adv. Appl. Mech. 33, 43–117 (1997)

    Article  Google Scholar 

  39. Günther, C., Kochmann, D.M., Hackl, K.: Rate-independent versus viscous evolution of laminate microstructures in finite crystal plasticity. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 63–88. Springer, Heidelberg (2015)

    Google Scholar 

  40. Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) 12(5), 1231–1266 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Garroni, A., Müller, S.: A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181, 535–578 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hackl, K., Heinz, S., Mielke, A.: A model for the evolution of laminates in finite-strain elastoplasticity. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(11-12), 888–909 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hobbs, B.E., Ord, A., Regenauer-Lieb, K.: The thermodynamics of deformed metamorphic rocks: a review. Journal of Structural Geology 33(5), 758–818 (2011)

    Article  Google Scholar 

  44. Hunt, G.W., Peletier, M.A., Wadee, M.A.: The Maxwell stability criterion in pseudo-energy models of kink banding. Journal of Structural Geology 22(5), 669–681 (2000)

    Article  Google Scholar 

  45. Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mechanics and Thermodynamics 23, 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kohn, R.V., Müller, S.: Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66, 697–715 (1992)

    Article  Google Scholar 

  47. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405–435 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal. 4, 273–334 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  50. Koumatos, K., Rindler, F., Wiedemann, E.: Orientation-preserving Young measures. Preprint arXiv:1307.1007 (2013)

    Google Scholar 

  51. Lee, E.H.: Elastic-plastic deformation at finite strains. Journal of Applied Mechanics 36, 1–5 (1969)

    Article  MATH  Google Scholar 

  52. Lee, E.H., Liu, D.T.: Finite strain elastic-plastic theory with application to plane wave analysis. Journal of Applied Physics 38, 19–27 (1967)

    Article  Google Scholar 

  53. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15(4), 351–382 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mielke, A.: Variational approaches and methods for dissipative material models with multiple scales. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 125–156. Springer, Heidelberg (2015)

    Google Scholar 

  55. Mielke, A., Müller, S.: Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM Z. Angew. Math. Mech. 86(3), 233–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics 2(1), 25–53 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  57. Morrey, C.B.: Multiple integrals in the calculus of variations. In: Die Grundlehren der Mathematischen Wissenschaften, vol. 130. Springer-Verlag New York, Inc., New York (1966)

    Google Scholar 

  58. Miehe, C., Stein, E.: A canonical model of multiplicative elasto-plasticity. formulation and aspects of the numerical implementation. European Journal of Mechanics A/Solids 11, 25–43 (1992)

    Google Scholar 

  59. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc (JEMS) 1, 393–442 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  60. Miehe, C., Schotte, J., Lambrecht, M.: Homogeneization of inelastic solid materials at finite strains based on incremental minimization principles. application to the texture analysis of polycrystals. J. Mech. Phys. Solids 50, 2123–2167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Müller, S., Scardia, L., Zeppieri, C.I.: Geometric rigidity for incompatible fields and an application to strain-gradient plasticity. Indiana Univ. Math. J. 63, 1365–1396 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  62. Müller, S., Scardia, L., Zeppieri, C.I.: Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 175–204. Springer, Heidelberg (2015)

    Google Scholar 

  63. Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel, F., et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Math., vol. 1713, pp. 85–210. Springer (1999)

    Google Scholar 

  64. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  65. Price, N.J., Cosgrove, J.W.: Analysis of geological structures. Cambridge University Press (1990)

    Google Scholar 

  66. Pimenta, S., Gutkin, R., Pinho, S., Robinson, P.: A micromechanical model for kink-band formation: Part I - experimental study and numerical modelling. Comp. Sci. Tech. 69(7-8), 948–955 (2009)

    Article  Google Scholar 

  67. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = F e F p. J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  MathSciNet  Google Scholar 

  68. Roubíček, T.: Relaxation in optimization theory and variational calculus. de Gruyter Series in Nonlinear Analysis and Applications, vol. 4. Walter de Gruyter & Co., Berlin (1997)

    Book  MATH  Google Scholar 

  69. Schubert, T.: Scaling relation for low energy states in a single-slip model in finite crystal plasticity. ZAMM Z. Angew. Math. Mech. (2014)

    Google Scholar 

  70. Smalljm. Wikipedia, http://commons.wikimedia.org/wiki/File:Millook_cliffs_enh.jpg (downloaded on November 28, 2014) Copyright CC BY 3.0

  71. Simo, J., Ortiz, M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Engrg. 49(2), 221–245 (1985)

    Article  MATH  Google Scholar 

  72. Siboni, M.H., Ponte Castañeda, P.: Fiber-constrained, dielectric-elastomer composites: finite-strain response and stability analysis. J. Mech. Phys. Solids 68, 211–238 (2014)

    Article  MathSciNet  Google Scholar 

  73. Scardia, L., Zeppieri, C.: Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy. SIAM J. Math. Anal. 44, 2372–2400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  74. Wadee, M.A., Hunt, G.W., Peletier, M.A.: Kink band instability in layered structures. J. Mech. Phys. Solids 52(5), 1071–1091 (2004)

    Article  MATH  Google Scholar 

  75. Wadee, M.A., Völlmecke, C., Haley, J.F., Yiatros, S.: Geometric modelling of kink banding in laminated structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370(1965), 1827–1849 (2012)

    Article  Google Scholar 

  76. Young, L.C.: Lectures on the calculus of variations and optimal control theory. W. B. Saunders Co. (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conti, S., Dolzmann, G., Kreisbeck, C. (2015). Variational Modeling of Slip: From Crystal Plasticity to Geological Strata. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics