Skip to main content

Temperature Sensitive Fabric for Monitoring Dermal Temperature Variations

  • Chapter
Wearable Electronics Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 15))

Abstract

Electronic fabrics and smart textiles are advancing biomedical research for use in a variety of ambulatory, diagnostic, and therapeutic devices. New materials and technologies are making it possible to continuously monitor important parameters for health and wellness applications. This chapter will discuss a resistive, fabric-based temperature sensor that can determine temperature between 25ºC and 45ºC by monitoring variations in the material’s electrical resistance. The measured resistance of the material decreases with increasing temperature, indicating that this fabric sensor has a negative temperature coefficient of resistance, or α and sometimes called the TCR, which is approximately -0.228 ± 0.03%/ºC averaged over three separate sensors. These results indicate that this material’s electronic conductivity behaves analogous to semiconductor materials and would classify this device as a thermistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axisa, F., Schmitt, P.M., Gehin, C., Delhomme, G., McAdams, E., Dittmar, A.: Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans. on Inf. Technol. Biomed. 9, 325–336 (2005), doi:10.1109/TITB.2005.854505

    Article  Google Scholar 

  2. Reynolds, A.H.: Resistively heated fabrics for use in wearable therapeutic devices. Bachelor of Science in Mechanical Engineering, Massachusetts Institute of Technology (2010)

    Google Scholar 

  3. Berzowska, J.: Electronic textiles: Wearable computers, reactive fashion, and soft computation. Text J. Cloth. Cult. 3, 58–75 (2005)

    Article  Google Scholar 

  4. Ciluffo, G.: Therapeutic “smart” fabric garment including support hose, body garments, and athletic wear (2004)

    Google Scholar 

  5. Perez de Isla, L., Lennie, V., Quezada, M., Guinea, J., Arce, C., Abad, P., Saltijeral, A., Campos, N.C., Crespo, J., Gonzálvez, B., Macia, A., Zamorano, J.: New generation dynamic, wireless and remote cardiac monitorization platform: A feasibility study. Int. J. Cardiol. 153, 83–85 (2011), doi:10.1016/j.ijcard.2011.08.074

    Article  Google Scholar 

  6. Armstrong, D.G., Holtz-Neiderer, K., Wendel, C., Mohler, M.J., Kimbriel, H.R., Lavery, L.A.: Skin Temperature Monitoring Reduces the Risk for Diabetic Foot Ulceration in High-risk Patients. Am. J. Med. 120, 1042–1046 (2007), doi:10.1016/j.amjmed.2007.06.028

    Article  Google Scholar 

  7. Armstrong, D.G., Lavery, L.A., Liswood, P.J., Todd, W.F., Tredwell, J.A.: Infrared dermal thermometry for the high-risk diabetic foot. Phys. Ther. 77, 169–175 (1997)

    Google Scholar 

  8. Benbow, S.J., Chan, A.W., Bowsher, D.R., Williams, G., Macfarlane, I.A.: The prediction of diabetic neuropathic plantar foot ulceration by liquid-crystal contact thermography. Diabetes Care 17, 835–839 (1994)

    Article  Google Scholar 

  9. Bharara, M., Cobb, J.E., Claremont, D.J.: Thermography and Thermometry in the Assessment of Diabetic Neuropathic Foot: A Case for Furthering the Role of Thermal Techniques. Int. J. Low Extrem Wounds 5, 250–260 (2006), doi:10.1177/1534734606293481

    Article  Google Scholar 

  10. Stess, R.M., Sisney, P.C., Moss, K.M., Graf, P.M., Louie, K.S., Gooding, G.A., Grunfeld, C.: Use of liquid crystal thermography in the evaluation of the diabetic foot. Diabetes Care 9, 267–272 (1986)

    Article  Google Scholar 

  11. Biddiss, E., Chau, T.: Upper-Limb Prosthetics Critical Factors in Device Abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987 (2007)

    Article  Google Scholar 

  12. Burger, H., Marincek, C.: Upper limb prosthetic use in Slovenia. Prosthet. Orthot. Int. 18, 25–33 (1994)

    Google Scholar 

  13. Huff, E.A., Ledoux, W.R., Berge, J.S., Klute, G.K.: Measuring residual limb skin temperatures at the skin-prosthesis interface. JPO J Prosthet. Orthot. 20, 170 (2008)

    Article  Google Scholar 

  14. Peery, J.T., Ledoux, W.R., Klute, G.K.: Residual-limb skin temperature in transtibial sockets. J. Rehabil. Res. Dev. 42, 147–154 (2005)

    Article  Google Scholar 

  15. Blasdel, N.J., Wujcik, E.K., Carletta, J.E., Lee, K.-S., Monty, C.N.: Fabric Nanocomposite Resistance Temperature Detector. IEEE Sens. J. 15, 300–306 (2015), doi:10.1109/JSEN.2014.2341915

    Article  Google Scholar 

  16. McGee, T.D.: Principles and methods of temperature measurement. Wiley, New York (1988)

    Google Scholar 

  17. Suprynowicz, V.A.: Electrical and electronics fundamentals: an applied survey of electrical engineering. West, St. Paul (1987)

    Google Scholar 

  18. Rizzoni, G.: Principles and applications of electrical engineering, 5th edn. McGraw-Hill Higher Education, Boston (2007)

    Google Scholar 

  19. Sachse, H.: Semiconducting temperature sensors and their applications. Wiley, New York (1975)

    Google Scholar 

  20. Howling, D.H.: Positive temperature coefficient semiconductor device (1960)

    Google Scholar 

  21. Neamen, D.A.: Semiconductor physics and devices: basic principles. McGraw-Hill, Boston (2003)

    Google Scholar 

  22. Patterson, J.D., Bailey, B.C.: Solid-state physics. Springer, Berlin (2007)

    Google Scholar 

  23. Quinn, J.J., Yi, K.-S.: Solid State Physics. Springer, Heidelberg (2009)

    Book  Google Scholar 

  24. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons, Inc. (2007)

    Google Scholar 

  25. Hunt, L.B.: The Origin of the Platinum Resistance Thermometer. Platin. Metals Rev. 24, 104–112 (1980)

    Google Scholar 

  26. Camargo, P.H.C., Satyanarayana, K.G., Wypych, F.: Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)

    Article  Google Scholar 

  27. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008), doi:10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  28. Cheung, W., Chiu, P.L., Parajuli, R.R., Ma, Y., Ali, S.R., He, H.: Fabrication of high performance conducting polymer nanocomposites for biosensors and flexible electronics: summary of the multiple roles of DNA dispersed and functionalized single walled carbon nanotubes. J. Mater. Chem. 19, 6465 (2009), doi:10.1039/b823065j

    Article  Google Scholar 

  29. Hnaien, M., Lagarde, F., Bausells, J., Errachid, A., Jaffrezic-Renault, N.: A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal. Bioanal. Chem. 400, 1083–1092 (2011), doi:10.1007/s00216-010-4336-x

    Article  Google Scholar 

  30. Kahlweit, M.: Microemulsions. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 95, 89–116 (1999)

    Article  Google Scholar 

  31. Lerner, M.B., Goldsmith, B.R., McMillon, R., Dailey, J., Pillai, S., Singh, S.R., Johnson, A.T.C.: A carbon nanotube immunosensor for Salmonella. AIP Adv. 1, 42127 (2011), doi:10.1063/1.3658573

    Article  Google Scholar 

  32. Venturelli, E., Fabbro, C., Chaloin, O., Ménard-Moyon, C., Smulski, C.R., Da Ros, T., Kostarelos, K., Prato, M., Bianco, A.: Antibody Covalent Immobilization on Carbon Nanotubes and Assessment of Antigen Binding. Small 7, 2179–2187 (2011), doi:10.1002/smll.201100137

    Article  Google Scholar 

  33. Kim, H.S., Jin, H.-J., Myung, S.J., Kang, M., Chin, I.-J.: Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6. Macromol. Rapid Commun. 27, 146–151 (2006), doi:10.1002/marc.200500617

    Article  Google Scholar 

  34. Li, F., Scampicchio, M., Mannino, S.: Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes as Coating for Electrochemical Sensors for Sulfhydryl Compounds. Electroanalysis 23, 1773–1775 (2011), doi:10.1002/elan.201100068

    Article  Google Scholar 

  35. Jacobs, C.B., Peairs, M.J., Venton, B.J.: Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010), doi:10.1016/j.aca.2010.01.009

    Article  Google Scholar 

  36. Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009), doi:10.1016/j.compscitech.2008.06.018

    Article  Google Scholar 

  37. Wujcik, E.K., Monty, C.N.: Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 233–249 (2013), doi:10.1002/wnan.1213

    Article  Google Scholar 

  38. Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993), doi:10.1038/363605a0

    Article  Google Scholar 

  39. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993), doi:10.1038/363603a0

    Article  Google Scholar 

  40. Jorio, A., Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Determination of nanotubes properties by Raman spectroscopy. Philos. Trans. Math. Phys. Eng. Sci. 362, 2311–2336 (2004), doi:1J0Y9YKD70BCDJB0 [pii] 10.1098/rsta.2004.1443

    Google Scholar 

  41. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001)

    Article  Google Scholar 

  42. Sinha, N., Ma, J., Yeow, J.T.: Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006)

    Article  Google Scholar 

  43. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of fullerenes and carbon nanotubes. Academic Press, San Diego (1996)

    Google Scholar 

  44. Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Carbon nanotubes: advanced topics in the synthesis, structure, properties, and applications. Springer, Berlin (2008)

    Book  Google Scholar 

  45. Rotkin, S.S.V., Subramoney, S.: Applied physics of carbon nanotubes. Springer (2005)

    Google Scholar 

  46. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical properties of carbon nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  47. Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin (2001)

    Google Scholar 

  48. Choudhary, V., Gupta, A.: Polymer/carbon nanotube nanocomposites. Carbon Nanotub.-Polym. Nanocomposites, 65–90 (2011)

    Google Scholar 

  49. Ali, K., Hafez, M.: Growth and structure of carbon nanotubes based novel catalyst for ultrafast nano-temperature sensor application. Superlattices Microstruct. 54, 1–6 (2013), doi:10.1016/j.spmi.2012.10.007

    Article  Google Scholar 

  50. Di Bartolomeo, A., Sarno, M., Giubileo, F., Altavilla, C., Iemmo, L., Piano, S., Bobba, F., Longobardi, M., Scarfato, A., Sannino, D., Cucolo, A.M., Ciambelli, P.: Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 105, 064518 (2009), doi:10.1063/1.3093680

    Article  Google Scholar 

  51. Cagatay, E., Falco, A., Abdellah, A., Lugli, P.: Carbon nanotube based temperature sensors fabricated by large-scale spray deposition. Microelectron. In: Electron. PRIME 2014 10th Conf. Ph. Res., pp. 1–4. IEEE (2014)

    Google Scholar 

  52. Fung, C.K., Li, W.J.: Ultra-low-power polymer thin film encapsulated carbon nanotube thermal sensors. In: 2004 4th IEEE Conf. on Nanotechnol., pp. 158–160 (2004)

    Google Scholar 

  53. Giuliani, A., Placidi, M., Di Francesco, F., Pucci, A.: A new polystyrene-based ionomer/MWCNT nanocomposite for wearable skin temperature sensors. React. Funct. Polym. 76, 57–62 (2014), doi:10.1016/j.reactfunctpolym.2014.01.008

    Article  Google Scholar 

  54. Hsu, M.-C., Lee, G.-B.: Carbon nanotube-based hot-film and temperature sensor assembled by optically-induced dielectrophoresis. IET Nanobiotechnol. 8, 44–50 (2014), doi:10.1049/iet-nbt.2013.0040

    Article  Google Scholar 

  55. Karimov, K.S., Chani, M.T.S., Khalid, F.A.: Carbon nanotubes film based temperature sensors. Phys. E Low-Dimens. Syst. Nanostructures 43, 1701–1703 (2011), doi:10.1016/j.physe.2011.05.025

    Article  Google Scholar 

  56. Karimov, K.S., Khalid, F.A., Chani, M.T.S., Mateen, A., Hussain, M.A., Maqbool, A., Ahn, J.: Carbon nanotubes based flexible temperature sensors. Optoelectron. Adv. Mater. 6, 194–196 (2012)

    Google Scholar 

  57. Matzeu, G., Pucci, A., Savi, S., Romanelli, M., Di Francesco, F.: A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens. Actuators Phys. 178, 94–99 (2012), doi:10.1016/j.sna.2012.02.043

    Article  Google Scholar 

  58. Mohsin, K.M., Banadaki, Y.M., Srivastava, A.: Metallic single-walled, carbon nanotube temperature sensor with self heating. SPIE Smart Struct. Mater. Nondestruct. Eval. Health Monit. International Society for Optics and Photonics, pp. 906003–906003 (2014)

    Google Scholar 

  59. Selvarasah, S., Chen, C.-L., Chao, S.-H., Makaram, P., Busnaina, A., Dokmeci, M.R.: A Three Dimensional Thermal Sensor Based on Single-Walled Carbon Nanotubes. In: Solid-State Sens. Actuators Microsyst. Conf, TRANSDUCERS, Int., pp. 1023–1026 (2007)

    Google Scholar 

  60. Sibinski, M., Jakubowska, M., Sloma, M.: Flexible Temperature Sensors on Fibers. Sensors 10, 7934–7946 (2010), doi:10.3390/s100907934

    Article  Google Scholar 

  61. Tian, M., Huang, Y., Wang, W., Li, R., Liu, P., Liu, C., Zhang, Y.: Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 29, 1288–1294 (2014), doi:10.1557/jmr.2014.109

    Article  Google Scholar 

  62. De Volder, M., Reynaerts, D., Van Hoof, C., Tawfick, S., Hart, A.J.: A temperature sensor from a self-assembled carbon nanotube microbridge. In: 2010 IEEE Sens., pp. 2369–2372 (2010)

    Google Scholar 

  63. Yang, X., Zhou, Z., Zheng, F., Wu, Y.: High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array. Micro Nano Lett. 5, 157 (2010), doi:10.1049/mnl.2010.0005

    Article  Google Scholar 

  64. Lala, N., Thavasi, V., Ramakrishna, S.: Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability. Sensors 9, 86–101 (2009)

    Article  Google Scholar 

  65. Mahmood, N., Islam, M., Hameed, A., Saeed, S.: Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties. Polymers 5, 1380–1391 (2013), doi:10.3390/polym5041380

    Article  Google Scholar 

  66. Ramanathan, T., Fisher, F.T., Ruoff, R.S., Brinson, L.C.: Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chem. Mater. 17, 1290–1295 (2005), doi:10.1021/cm048357f

    Article  Google Scholar 

  67. Chang, C.M., Liu, Y.L.: Electrical Conductivity Enhancement of Polymer/Multi-walled Carbon Nanotube (MWCNT) Composites by Thermally-induced De-functionalization of MWCNTs. ACS Appl. Mater. Interfaces (2011)

    Google Scholar 

  68. Ryu, J.S.: Work Functions of Functionalized Single-Walled Carbon Nanotubes. Massachusetts Institute of Technology (2006)

    Google Scholar 

  69. Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S., Cho, K.J.: Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano Lett. 3, 347–351 (2003), doi:10.1021/nl034010k

    Article  Google Scholar 

  70. Sahoo, N.G., Cheng, H.K.F., Cai, J., Li, L., Chan, S.H., Zhao, J., Yu, S.: Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater. Chem. Phys. 117, 313–320 (2009)

    Article  Google Scholar 

  71. Lee, J.Y., Song, K.T., Kim, S.Y., Kim, Y.C., Kim, D.Y., Kim, C.Y.: Synthesis and characterization of soluble polypyrrole. Synth. Met. 84, 137–140 (1997)

    Article  Google Scholar 

  72. Song, M.-K., Kim, Y.-T., Kim, B.-S., Kim, J., Char, K., Rhee, H.-W.: Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth. Met. 141, 315–319 (2004), doi:10.1016/j.synthmet.2003.07.015

    Article  Google Scholar 

  73. Jang, K.S., Lee, H., Moon, B.: Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth. Met. 143, 289–294 (2004), doi:10.1016/j.synthmet.2003.12.013

    Article  Google Scholar 

  74. Lee, J.Y., Kim, D.Y., Kim, C.Y.: Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth. Met. 74, 103–106 (1995)

    Article  Google Scholar 

  75. Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R.: Handbook of conducting polymers. M. Dekker, New York (1998)

    Google Scholar 

  76. Brezoi, D.V.: Polypyrrole Films Prepared By Chemical Oxidation of Pyrrol. In: Aqueous FeCl3 Solution. J. Sci. Arts 12

    Google Scholar 

  77. Inzelt, G.: Conducting polymers. Springer, New York (2012)

    Google Scholar 

  78. Vetter, C.A., Suryawanshi, A., Lamb, J.R., Law, B., Gelling, V.J.: Novel Synthesis of Stable Polypyrrole Nanospheres Using Ozone. Langmuir 27, 13719–13728 (2011), doi:10.1021/la202947e

    Article  Google Scholar 

  79. Mohammadi, A., Hasan, M.A., Liedberg, B., Lundström, I., Salaneck, W.R.: Chemical vapour deposition (CVD) of conducting polymers: polypyrrole. Synth. Met. 14, 189–197 (1986)

    Article  Google Scholar 

  80. Lunn, B.A., Unsworth, J., Booth, N.G., Innis, P.C.: Determination of the thermal conductivity of polypyrrole over the temperature range 280–335 K. J. Mater. Sci. 28, 5092–5098 (1993)

    Article  Google Scholar 

  81. Ramanavičius, A., Ramanavičienė, A., Malinauskas, A.: Electrochemical sensors based on conducting polymer—polypyrrole. Electrochimica Acta 51, 6025–6037 (2006), doi:10.1016/j.electacta.2005.11.052

    Article  Google Scholar 

  82. Du, D., Ye, X., Cai, J., Liu, J., Zhang, A.: Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens. Bioelectron. 25, 2503–2508 (2010), doi:10.1016/j.bios.2010.04.018

    Article  Google Scholar 

  83. Tam, P.D., Hieu, N.V.: Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole. Appl. Surf. Sci. (2011)

    Google Scholar 

  84. Ouerghi, O., Touhami, A., Jaffrezic-Renault, N., Martelet, C., BenOuada, H., Cosnier, S.: Electrodeposited Biotinylated Polypyrrole as an Immobilization Method for Impedimetric Immunosensors. IEEE Sens. J. 4, 559–567 (2004), doi:10.1109/JSEN.2004.832858

    Article  Google Scholar 

  85. Vidal, J.C., García, E., Castillo, J.R.: In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: Determination of total cholesterol in serum. Anal. Chim. Acta 385, 213–222 (1999)

    Article  Google Scholar 

  86. An, K.H., Jeong, S.Y., Hwang, H.R., Lee, Y.H.: Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube–Polypyrrole Nanocomposites. Adv. Mater. 16, 1005–1009 (2004), doi:10.1002/adma.200306176

    Article  Google Scholar 

  87. Bartlett, P.N., Ling-Chung, S.K.: Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sens. Actuators 19, 141–150 (1989)

    Article  Google Scholar 

  88. De Schoenmaker, B., Van der Schueren, L.: Wicking Properties of Various Polyamide Nanofibrous Structures with an Optimized Method. J. Appl. Polym. Sci. 120, 305–310 (2011)

    Article  Google Scholar 

  89. Bai, Y., Lin, D., Wu, F., Wang, Z., Xing, B.: Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere 79, 362–367 (2010), doi:S0045-6535(10)00169-4 [pii] 10.1016/j.chemosphere.2010.02.023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blasdel, N.J., Monty, C.N. (2015). Temperature Sensitive Fabric for Monitoring Dermal Temperature Variations. In: Mukhopadhyay, S. (eds) Wearable Electronics Sensors. Smart Sensors, Measurement and Instrumentation, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18191-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18191-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18190-5

  • Online ISBN: 978-3-319-18191-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics