Skip to main content
Log in

Determination of the thermal conductivity of polypyrrole over the temperature range 280–335 K

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Samples of polypyrrole were synthesised under galvanostatic conditions to produce films possessing a range of electrical conductivity from 10−3 to 10 S cm−1. The electrical and thermal conductivity of these films has been determined between 280 and 335 K. The electrical conductivity was measured using a four probe technique calibrated against ASTM D4496-87. Thermal conductivity was determined from measurements of thermal diffusivity, specific heat and density. Thermal diffusivity was determined using a modified a.c. calorimetry technique, while differential scanning calorimetry (DSC) was used to determine specific heat. The polymer's density was measured using Archimedes' principle. The results were used to calculate the Lorenz number of polypyrrole. A comparison of the predicted behaviour and experimental results was made. Thermal conductivity is found to be large compared to that predicted from the electrical conductivity measurements on low conductivity films. Molecular vibration effects are found to be non-trivial and experimental means for measuring their contribution are mentioned. While polypyrrole has been regarded as a “synthetic metal” the thermal conductivity results show this classification is wrong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Ellis, in “Handbook of Conducting Polymers” edited by T.A. Skotheim (Marcel Dekker, New York, 1986) Vol. 1, p. 489.

    Google Scholar 

  2. H. Naarmann and N. Theophilou, Synth. Met. 22 (1987) 1.

    Article  CAS  Google Scholar 

  3. J. Unsworth, B. A. Lunn, P. C. Innis, Z. Jin, A. Kaynak and N. G. Booth, J. Intelligent Mater. Syst. Structures 3(3) (1992) 380.

    Article  Google Scholar 

  4. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G. B. Street, Synth. Met. 4 (1981) 119.

    Article  CAS  Google Scholar 

  5. M. Satoh, H. Yamasaki, S. Aoki and K. Yoshino, ibid. 20 (1987) 79.

    Article  CAS  Google Scholar 

  6. D. Moses and A. Denenstein, Phys. Rev. B 30(4) (1984) 2090.

    Article  CAS  Google Scholar 

  7. P. R. Newman, M. D. Ewbank, C. D. Mauthe, M. R. Winkle and W. D. Smolyncki, Solid State Commun. 40 (1981) 975.

    Article  CAS  Google Scholar 

  8. G. Leising and H. Kahlert, J. Physique Colloque 44 (1983) 111.

    Google Scholar 

  9. H. Yoon, B. S. Jung and H. Lee, Synth. Met. 41 (1991) 699.

    Article  CAS  Google Scholar 

  10. H. J. Goldsmid, in “Thermal Properties of Solids” (Routledge and Kegan Paul, London, 1965) pp. 49–62.

    Google Scholar 

  11. J. E. Parrott and A. D. Stukes, in “Thermal Conductivity of Solids” (Pion, London, 1975) pp. 101–104 and 110–119.

    Google Scholar 

  12. J. Unsworth, Z. Jin, B. A. Lunn and P. C. Innis, Polym. Int. 26 (1991) 245.

    Article  CAS  Google Scholar 

  13. I. Hatta, Y. Sasuga, R. Kato and A. Maesono, Rev. Sci. Instrum. 56 (8) (1985) 1643.

    Article  CAS  Google Scholar 

  14. I. Hatta, R. Kato and A. Maesono, Japn J. Appl. Phys. 25 (1986) L493.

    Article  CAS  Google Scholar 

  15. Idem., ibid. 26 (1987) 475.

    Article  CAS  Google Scholar 

  16. D. H. Howling, E. Mendoza and J. E. Zimmerman, Proc. R. Soc. Lond. Ser. A 229 (1955) 86.

    Article  CAS  Google Scholar 

  17. M. B. Salamon, P. R. Garnier, B. Golding and E. Buehler, J. Phys. Chem. Solids 35 (1974) 851.

    Article  CAS  Google Scholar 

  18. B. A. Lunn, J. Unsworth and N. G. Booth, Polym. Sci., Submitted.

  19. F. W. Billmeyer Jr, in “Textbook of Polymer Science” (John Wiley & Sons, New York, 1984) p. 243.

    Google Scholar 

  20. G. H. Aylward and T. J. V. Findlay, “SI Chemical Data” (John Wiley & Sons, New York, 1985) p. 6.

    Google Scholar 

  21. Y. S. Touloukien, R. W. Powell, C. Y. Ho and M. C. Nicalaou, in “Thermophysical Properties of Matter”, Vol. 2 (IFI/Plenum New York, 1973) pp, 958 and 964.

    Google Scholar 

  22. R. S. Elliott, in “Physics of Amorphous Materials” (Longman Scientific and Technical, London, 1984) p. 288.

    Google Scholar 

  23. N. F. Mott and E. A. Davis, in “Electronic Processes in Non-Crystalline Materials” (Oxford University Press, London, 1979) p. 34.

    Google Scholar 

  24. D. S. Maddison, R. B. Roberts and J. Unsworth, Synth. Met. 26 (1988) 99.

    Article  CAS  Google Scholar 

  25. J. L. Bredas, J. C. Scott, K. Yakush and G. B. Street, Phys. Rev. B 30(2) (1984) 1023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunn, B.A., Unsworth, J., Booth, N.G. et al. Determination of the thermal conductivity of polypyrrole over the temperature range 280–335 K. JOURNAL OF MATERIALS SCIENCE 28, 5092–5098 (1993). https://doi.org/10.1007/BF00361185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361185

Keywords

Navigation