Skip to main content

Role of Mesenchymal Stem Cells, Macrophages, and Biomaterials During Myocardial Repair

  • Chapter
  • First Online:
Biomaterials in Regenerative Medicine and the Immune System
  • 1117 Accesses

Abstract

Myocardial infarction (MI) is a potentially lethal condition and remains one of the leading causes of death. Since heart tissue has a diminished capacity to regenerate itself, the current goal is to replace the damaged tissue with repair cells that have the capacity to recover heart function. Among the methods being investigated include the use of human-derived mesenchymal stem cell (MSC). Although these cells have not been shown to effectively produce functional cardiomyocytes, they have shown great potential to improve angiogenesis and cardiac function. Engineered cardiac patches composed of hMSCs and a biomaterial will inevitably be subjected to the inflammatory environment that follows the MI, and these interactions will play a crucial role during the remodeling process. This chapter describes the inflammatory environment found after an MI followed by a description of how MSCs can be used as part of a cardiac patch that can modulate the inflammatory response to improve healing.

Isabella Pallotta, Emily A. Wrona and Bruce Sun have all equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.

    Google Scholar 

  2. Roche ET, Hastings CL, Lewin SA, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35(25):6850–8.

    Article  Google Scholar 

  3. Strauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol. 2011;58(11):1095–104.

    Article  Google Scholar 

  4. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary stem cell transplantation in 191 patients with chronic heart failure: the STAR-heart study. Eur J Heart Fail. 2010;12(7):721–9.

    Article  Google Scholar 

  5. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  Google Scholar 

  6. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102(32):11474–9.

    Article  Google Scholar 

  7. Trivedi P, Tray N, Nguyen T, Nigam N, Gallicano GI. Mesenchymal stem cell therapy for treatment of cardiovascular disease: helping people sooner or later. Stem Cells Dev. 2010;19(7):1109–20.

    Article  Google Scholar 

  8. Elnakish MT, Hassan F, Dakhlallah D, Marsh CB, Alhaider IA, Khan M. Mesenchymal stem cells for cardiac regeneration: translation to bedside reality. Stem Cells Int. 2012;2012:646038.

    Article  Google Scholar 

  9. Shah VK, Shalia KK. Stem cell therapy in acute myocardial infarction: a pot of gold or Pandora’s box. Stem Cells Int. 2011;2011:536758.

    Article  Google Scholar 

  10. Freytes DO, Santambrogio L, Vunjak-Novakovic G. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs. 2012;195(1–2):171–82.

    Article  Google Scholar 

  11. Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem. 2013;114(1):220–9.

    Article  Google Scholar 

  12. Wolf MT, Dearth CL, Ranallo CA, et al. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. 2014;35(25):6838–49.

    Article  Google Scholar 

  13. Brown BN, Londono R, Tottey S, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomaterialia. 2012;8(3):978–87.

    Article  Google Scholar 

  14. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91.

    Article  Google Scholar 

  15. Robbins SL, Kumar V, Cotran RS. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Saunders/Elsevier; 2010.

    Google Scholar 

  16. Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58(2):88–111.

    Article  Google Scholar 

  17. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    Article  Google Scholar 

  18. Kempf T, Zarbock A, Vestweber D, Wollert KC. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med. 2012;90(4):361–9.

    Article  Google Scholar 

  19. Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35.

    Article  Google Scholar 

  20. Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Intl J Cardiol. 2008;130(2):147–58.

    Article  Google Scholar 

  21. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  Google Scholar 

  22. Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.

    Article  Google Scholar 

  23. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

    Article  Google Scholar 

  24. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007;170(3):818–29.

    Article  Google Scholar 

  25. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61.

    Article  Google Scholar 

  26. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.

    Article  Google Scholar 

  27. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  Google Scholar 

  28. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  Google Scholar 

  29. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  Google Scholar 

  30. Chou SH, Lin SZ, Day CH, et al. Mesenchymal stem cell insights: prospects in hematological transplantation. Cell Transplant. 2013;22(4):711–21.

    Article  Google Scholar 

  31. Bernardo ME, Avanzini MA, Ciccocioppo R, et al. Phenotypical/functional characterization of in vitro-expanded mesenchymal stromal cells from patients with Crohn’s disease. Cytotherapy. 2009;11(7):825–36.

    Article  Google Scholar 

  32. Patel SA, Sherman L, Munoz J, Rameshwar P. Immunological properties of mesenchymal stem cells and clinical implications. Arc Immunol Ther Exp. 2008;56(1):1–8.

    Article  Google Scholar 

  33. Jiang S, Kh Haider H, Ahmed RP, Idris NM, Salim A, Ashraf M. Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol. 2008;44(3):582–96.

    Article  Google Scholar 

  34. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.

    Article  Google Scholar 

  35. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002;73(6):1919–25; discussion 26.

    Article  Google Scholar 

  36. Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med. 2004;229(7):623–31.

    Google Scholar 

  37. Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells. 2008;26(11):2884–92.

    Article  Google Scholar 

  38. Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res. 2008;103(2):167–76.

    Article  Google Scholar 

  39. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med. 2006;38(2):144–53.

    Article  Google Scholar 

  40. Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A. 2007;104(45):17783–8.

    Article  Google Scholar 

  41. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41(7):1078–83.

    Article  Google Scholar 

  42. Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65(3):321–9.

    Article  Google Scholar 

  43. Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10-year point. Circulation. 2005;112(20):3174–83.

    Article  Google Scholar 

  44. Dayan V, Yannarelli G, Billia F, et al. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol. 2011;106(6):1299–310.

    Article  Google Scholar 

  45. Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med. 2014;46:e70.

    Article  Google Scholar 

  46. Adutler-Lieber S, Ben-Mordechai T, Naftali-Shani N, et al. Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. J Cardiovasc Pharmacol Ther. 2013;18(1):78–86.

    Article  Google Scholar 

  47. Bartosh TJ, Ylostalo JH, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010;107(31):13724–9.

    Article  Google Scholar 

  48. Naftali-Shani N, Itzhaki-Alfia A, Landa-Rouben N, et al. The origin of human mesenchymal stromal cells dictates their reparative properties. J Am Heart Assoc. 2013;2(5):e000253.

    Article  Google Scholar 

  49. Pfister O, Della Verde G, Liao R, Kuster GM. Regenerative therapy for cardiovascular disease. Translational Res. 2014;163(4):307–20.

    Article  Google Scholar 

  50. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–201.

    Article  Google Scholar 

  51. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–8.

    Article  Google Scholar 

  52. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8):923–40.

    Article  Google Scholar 

  53. Templin C, Krankel N, Luscher TF, Landmesser U. Stem cells in cardiovascular regeneration: from preservation of endogenous repair to future cardiovascular therapies. Curr Pharm Des. 2011;17(30):3280–94.

    Article  Google Scholar 

  54. Godier-Furnemont AF, Martens TP, Koeckert MS, et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A. 2011;108(19):7974–9.

    Article  Google Scholar 

  55. Wang T, Jiang XJ, Tang QZ, et al. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomaterialia. 2009;5(8):2939–44.

    Google Scholar 

  56. Simpson D, Liu H, Fan TH, Nerem R, Dudley SC, Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells. 2007;25(9):2350–7.

    Google Scholar 

  57. Godier-Furnemont AF, Martens TP, Koeckert MS, et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A. 2011;108(19):7974–9.

    Google Scholar 

Download references

Acknowledgement

This work was supported by NYSTEM C026721A Empire State Stem Cell Scholars: Fellow-to-Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald O. Freytes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pallotta, I., Wrona, E., Sun, B., Freytes, D. (2015). Role of Mesenchymal Stem Cells, Macrophages, and Biomaterials During Myocardial Repair. In: Santambrogio, L. (eds) Biomaterials in Regenerative Medicine and the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-18045-8_1

Download citation

Publish with us

Policies and ethics