Skip to main content

Structure, Regulation and Polymorphisms of the Aromatase Gene

  • Chapter
  • First Online:
Resistance to Aromatase Inhibitors in Breast Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 8))

Abstract

Human aromatase is widely expressed in various tissues and shows complicated regulation by both inductive and suppressive factors. The aromatase gene has the unique characteristic of having multiple exons available for use as exon 1, which are flanked with unique promoters. Tissue-specific expression of aromatase is regulated by alternative use of these exons. The exon 1 termed exon I.4 (1b) is the one that is mainly used in breast tissues. However, during cancer development it is often switched from exon I.4 (1b) to exon I.3 (1c) or exon PII (1d), which causes enhancement of aromatase expression in cancer-associated adipocytes and fibroblasts. The aromatase gene is further regulated at both the transcriptional and post-transcriptional levels through PKA-, PKC-, and tyrosine kinase receptor-mediated signaling pathways that employ prostaglandin E2 and class 1 cytokines. Epigenetic modifications of the aromatase gene and microRNA-mediated aromatase regulation may play a critical role in breast cancer progression. Several genetic polymorphisms in the aromatase gene may be prognostic factors of disease and may influence response to aromatase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

Acivator protein-1

ATF-2:

Activating transcription factor-2

CAA:

Carcinoma-associated adipocytes

CAF:

Carcinoma-associated fibroblasts

C/EBP:

CCAAT/enhancer binding protein

CRE:

cAMP-responsive element

CREB:

CRE binding protein

E2:

17β-estradiol

ERK:

Extracellular signal-regulated kinase

GAS:

γ-interferon activation site

GPER:

G protein-coupled estrogen receptor

GRE:

Glucocorticoid responsive element

IHC:

Immunohistochemical staining

LRH-1:

Liver receptor homologue-1

MAPK:

Mitogen-activated protein kinase

PGE2 :

Prostaglandin E2

PI3K:

Phosphoinositide 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SF-1:

Steroidogenic factor-1

SNP:

Single nucleotide polymorphism

Sp1:

Specificity protein 1

References

  1. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD, Mendelson CR, Bulun SE. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15:342–55.

    CAS  PubMed  Google Scholar 

  2. Harada N, Utsumi T, Takagi Y. Tissue-specific expression of the human aromatase cytochrome P450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci USA. 1993;90:11312–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Naftolin F, Ryan KJ, Petro Z. Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology. 1972;90:295–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sasano H, Uzuki M, Sawai T, Nagura H, Matsunaga G, Kashimoto O, Harada N. Aromatase in human bone tissue. J Bone Miner Res. 1997;12:1416–23.

    Article  CAS  PubMed  Google Scholar 

  5. Harada N, Sasano H, Murakami H, Ohkuma T, Nagura H, Takagi Y. Localized expression of aromatase in human vascular tissues. Circ Res. 1999;84:1285–91.

    Article  CAS  PubMed  Google Scholar 

  6. Sasano H, Harada N. Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocr Rev. 1998;19:593–607.

    CAS  PubMed  Google Scholar 

  7. Harada N, Ota H, Yoshimura N, Katsuyama T, Takagi Y. Localized aberrant expression of cytochrome P450 aromatase in primary and metastatic malignant tumors of human liver. J Clin Endocrinol Metab. 1998;83:697–702.

    CAS  PubMed  Google Scholar 

  8. Ritvos O, Voutilainen R. Regulation of aromatase cytochrome P450 and 17 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid levels in choriocarcinoma cells. Endocrinology. 1992;130:61–7.

    CAS  PubMed  Google Scholar 

  9. Nestler JE. Modulation of aromatase and P450 cholesterol side-chain cleavage enzyme activities of human placental cytotrophoblasts by insulin and insulin-like growth factor I. Endocrinology. 1987;121:1845–52.

    Article  CAS  PubMed  Google Scholar 

  10. Garzo VG, Dorrington JH. Aromatase activity in human granulosa cells during follicular development and the modulation of follicle-stimulating hormone and insulin. Am J Obstet Gynecol. 1984;148:650–7.

    Article  Google Scholar 

  11. Imai A, Iida K, Tamaya T. Gonadotropin-releasing hormone has a biphasic action on aromatase activity through protein kinase c in granulosa cells. Int J Fertil Menopausal Stud. 1993;38:50–6.

    CAS  PubMed  Google Scholar 

  12. Simpson ER, Ackerman GE, Smith ME, Mendelson CR. Estrogen formation in stromal cells of adipose tissue of women: induction by glucocorticosteroids. Proc Natl Acad Sci USA. 1981;78:5690–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hsueh AJ, Erickson GF. Glucocorticoid inhibition of FSH-induced estrogen production in cultured rat granulosa cells. Steroids. 1978;32:639–48.

    Article  CAS  PubMed  Google Scholar 

  14. Roselli CE, Horton LE, Resko JA. Time-course and steroid specificity of aromatase induction in rat hypothalamus-preoptic area. Biol Reprod. 1987;37:628–33.

    Article  CAS  PubMed  Google Scholar 

  15. Chen SA, Besman MJ, Sparkes RS, Zollman S, Klisak I, Mohandas T, Hall PF, Shively JE. Human aromatase: cDNA cloning, southern blot analysis, and assignment of the gene to chromosome 15. DNA. 1988;7:27–38.

    Article  CAS  PubMed  Google Scholar 

  16. Shozu M, Zhao Y, Bulun SE, Simpson ER. Multiple splicing events involved in regulation of human aromatase expression by a novel promoter, I.6. Endocrinology. 1998;139:1610–7.

    CAS  PubMed  Google Scholar 

  17. Harada N. Aromatase and intracrinology of estrogen in hormone-dependent tumors. Oncology. 1999;57(Suppl 2):7–16.

    Article  CAS  PubMed  Google Scholar 

  18. Yamada K, Ogawa H, Honda S, Harada N, Okazaki T. A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem. 1999;274:32279–86.

    Article  CAS  PubMed  Google Scholar 

  19. Honda S, Kozako T, Shimeno H, Soeda S, Harada N. LIM-homeodomain transcription factor, Lhx2, is involved in transcriptional control of brain-specific promoter/exon 1f of the mouse aromatase gene. J Neuroendocrinol. 2012;24:1367–74.

    Article  CAS  PubMed  Google Scholar 

  20. Sebastian S, Takayama K, Shozu M, Bulun SE. Cloning and characterization of a novel endothelial promoter of the human CYP19 (aromatase P450) gene that is up-regulated in breast cancer tissue. Mol Endocrinol. 2002;16:2243–54.

    Article  CAS  PubMed  Google Scholar 

  21. Utsumi T, Harada N, Maruta M, Takagi Y. Presence of alternatively spliced transcripts of aromatase gene in human breast cancer. J Clin Endocrinol Metab. 1996;81:2344–9.

    CAS  PubMed  Google Scholar 

  22. Miller WR, O’Neill J. The importance of local synthesis of estrogen within the breast. Steroids. 1987;50:537–48.

    Article  CAS  PubMed  Google Scholar 

  23. Santen RJ, Martel J, Hoagland M, Naftolin F, Harada N, Hafer L, Zaino R, Santner SJ. Stromal spindle cells contain aromatase in human breast tumors. J Clin Endocrinol Metab. 1994;79:627–32.

    CAS  PubMed  Google Scholar 

  24. Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H. Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer. 2005;12:701–20.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi Y, Takei H, Suemasu K, Kobayashi Y, Kurosumi M, Harada N, Hayashi S. Tumor-stromal interaction through the estrogen-signaling pathway in human breast cancer. Cancer Res. 2005;65:4653–62.

    Article  CAS  PubMed  Google Scholar 

  26. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, Couderc B, Escourrou G, Valet P, Muller C. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73:5657–68.

    Article  CAS  PubMed  Google Scholar 

  27. Chen D, Reierstad S, Lu M, Lin Z, Ishikawa H, Bulun SE. Regulation of breast cancer-associated aromatase promoters. Cancer Lett. 2009;273:15–27.

    Article  CAS  PubMed  Google Scholar 

  28. Clyne CD, Speed CJ, Zhou J, Simpson ER. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem. 2002;277:20591–7.

    Article  CAS  PubMed  Google Scholar 

  29. Meng L, Zhou J, Sasano H, Suzuki T, Zeitoun KM, Bulun SE. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: Mechanism of desmoplastic reaction. Cancer Res. 2001;61:2250–5.

    CAS  PubMed  Google Scholar 

  30. Luo H, Yang G, Yu T, Luo S, Wu C, Sun Y, Liu M, Tu G. GPER-mediated proliferation and estradiol production in breast cancer-associated fibroblasts. Endocr Relat Cancer. 2014;21:355–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Harada N, Honda S. Molecular analysis of aberrant expression of aromatase in breast cancer tissues. Breast Cancer Res Treat. 1998;49:15–21.

    Article  Google Scholar 

  32. Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Transcriptional regulation of CYP19 gene (aromatase) expression in adipose stromal cells in primary culture. J Steroid Biochem Mol Biol. 1997;61:203–10.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol. 1996;10:1350–7.

    CAS  PubMed  Google Scholar 

  34. Bulun SE, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M. The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol. 2003;86:219–24.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Nichols JE, Bulun SE, Mendelson CR, Simpson ER. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J Biol Chem. 1995;270:16449–57.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology. 1996;137:5739–42.

    CAS  PubMed  Google Scholar 

  37. Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2012;2:356–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Subbaramaiah K, Hudis C, Chang SH, Hla T, Dannenberg AJ. EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. J Biol Chem. 2008;283:3433–44.

    Article  CAS  PubMed  Google Scholar 

  39. Rubin GL, Zhao Y, Kalus AM, Simpson ER. Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res. 2000;60:1604–8.

    CAS  PubMed  Google Scholar 

  40. Zhou J, Gurates B, Yang S, Sebastian S, Bulun SE. Malignant breast epithelial cells stimulate aromatase expression via promoter II in human adipose fibroblasts: an epithelial-stromal interaction in breast tumors mediated by CCAAT/enhancer binding protein beta. Cancer Res. 2001;61:2328–34.

    CAS  PubMed  Google Scholar 

  41. Samarajeewa NU, Ham S, Yang F, Simpson ER, Brown KA. Promoter-specific effects of metformin on aromatase transcript expression. Steroids. 2011;76:768–71.

    Article  CAS  PubMed  Google Scholar 

  42. Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 2009;69:5392–9.

    Article  CAS  PubMed  Google Scholar 

  43. Phuong NT, Lim SC, Kim YM, Kang KW. Aromatase induction in tamoxifen-resistant breast cancer: role of phosphoinositide 3-kinase-dependent creb activation. Cancer Lett. 2014.

    Google Scholar 

  44. Chen S, Itoh T, Wu K, Zhou D, Yang C. Transcriptional regulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol. 2002;83:93–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yang C, Zhou D, Chen S. Modulation of aromatase expression in the breast tissue by ERR alpha-1 orphan receptor. Cancer Res. 1998;58:5695–700.

    CAS  PubMed  Google Scholar 

  46. Zhou D, Chen S. Identification and characterization of a cAMP-responsive element in the region upstream from promoter 1.3 of the human aromatase gene. Arch Biochem Biophys. 1999;371:179–90.

    Article  CAS  PubMed  Google Scholar 

  47. Okubo T, Truong TK, Yu B, Itoh T, Zhao J, Grube B, Zhou D, Chen S. Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail (SnaH). Cancer Res. 2001;61:1338–46.

    CAS  PubMed  Google Scholar 

  48. Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D. Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PLoS ONE. 2013;8:e63599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ghai S, Monga R, Mohanty TK, Chauhan MS, Singh D. Tissue-specific promoter methylation coincides with Cyp19 gene expression in buffalo (bubalus bubalis) placenta of different stages of gestation. Gen Comp Endocrinol. 2010;169:182–9.

    Article  CAS  PubMed  Google Scholar 

  50. Monga R, Ghai S, Datta TK, Singh D. Tissue-specific promoter methylation and histone modification regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. Gen Comp Endocrinol. 2011;173:205–15.

    Article  CAS  PubMed  Google Scholar 

  51. Knower KC, To SQ, Simpson ER, Clyne CD. Epigenetic mechanisms regulating CYP19 transcription in human breast adipose fibroblasts. Mol Cell Endocrinol. 2010;321:123–30.

    Article  CAS  PubMed  Google Scholar 

  52. Lee L, Asada H, Kizuka F, Tamura I, Maekawa R, Taketani T, Sato S, Yamagata Y, Tamura H, Sugino N. Changes in histone modification and DNA methylation of the StAR and CYP19a1 promoter regions in granulosa cells undergoing luteinization during ovulation in rats. Endocrinology. 2013;154:458–70.

    Article  CAS  PubMed  Google Scholar 

  53. Kristensen VN, Andersen TI, Lindblom A, Erikstein B, Magnus P, Borresen-Dale AL. A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics. 1998;8:43–8.

    Article  CAS  PubMed  Google Scholar 

  54. Probst-Hensch NM, Ingles SA, Diep AT, Haile RW, Stanczyk FZ, Kolonel LN, Henderson BE. Aromatase and breast cancer susceptibility. Endocr Relat Cancer. 1999;6:165–73.

    Article  CAS  PubMed  Google Scholar 

  55. Ma CX, Adjei AA, Salavaggione OE, Coronel J, Pelleymounter L, Wang L, Eckloff BW, Schaid D, Wieben ED, Adjei AA, Weinshilboum RM. Human aromatase: gene resequencing and functional genomics. Cancer Res. 2005;65:11071–82.

    Article  CAS  PubMed  Google Scholar 

  56. Ma X, Qi X, Chen C, Lin H, Xiong H, Li Y, Jiang J. Association between cyp19 polymorphisms and breast cancer risk: results from 10,592 cases and 11,720 controls. Breast Cancer Res Treat. 2010;122:495–501.

    Article  CAS  PubMed  Google Scholar 

  57. Kristensen VN, Harada N, Yoshimura N, Haraldsen E, Lonning PE, Erikstein B, Karesen R, Kristensen T, Borresen-Dale AL. Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene. 2000;19:1329–33.

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Ellsworth KA, Moon I, Pelleymounter LL, Eckloff BW, Martin YN, Fridley BL, Jenkins GD, Batzler A, Suman VJ, Ravi S, Dixon JM, Miller WR, Wieben ED, Buzdar A, Weinshilboum RM, Ingle JN. Functional genetic polymorphisms in the aromatase gene CYP19 vary the response of breast cancer patients to neoadjuvant therapy with aromatase inhibitors. Cancer Res. 2010;70:319–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Straume AH, Knappskog S, Lonning PE. Effect of cyp19 rs6493497 and rs7176005 haplotype status on in vivo aromatase transcription, plasma and tissue estrogen levels in postmenopausal women. J Steroid Biochem Mol Biol. 2012;128:69–75.

    Article  CAS  PubMed  Google Scholar 

  60. Fontein DB, Houtsma D, Nortier JW, Baak-Pablo RF, Kranenbarg EM, van der Straaten TR, Putter H, Seynaeve C, Gelderblom H, van de Velde CJ, Guchelaar HJ. Germline variants in the CYP19A1 gene are related to specific adverse events in aromatase inhibitor users: a substudy of dutch patients in the TEAM trial. Breast Cancer Res Treat. 2014;144:599–606.

    Article  CAS  PubMed  Google Scholar 

  61. Napoli N, Rastelli A, Ma C, Yarramaneni J, Vattikutti S, Moskowitz G, Giri T, Mueller C, Kulkarny V, Qualls C, Ellis M, Armamento-Villareal R. Genetic polymorphism at val80 (rs700518) of the CYP19A1 gene is associated with aromatase inhibitor associated bone loss in women with Er + breast cancer. Bone. 2013;55:309–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ingle JN, Schaid DJ, Goss PE, Liu M, Mushiroda T, Chapman JA, Kubo M, Jenkins GD, Batzler A, Shepherd L, Pater J, Wang L, Ellis MJ, Stearns V, Rohrer DC, Goetz MP, Pritchard KI, Flockhart DA, Nakamura Y, Weinshilboum RM. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol. 2010;28:4674–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152:3941–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sethumadhavan K, Bellino FL, Thotakura NR. Estrogen synthetase (aromatase). The cytochrome P450 component of the human placental enzyme is a glycoprotein. Mol Cell Endocrinol. 1991;78:25–32.

    Article  CAS  PubMed  Google Scholar 

  65. Charlier TD, Harada N, Balthazart J, Cornil CA. Human and quail aromatase activity is rapidly and reversibly inhibited by phosphorylating conditions. Endocrinology. 2011;152:4199–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Hayashi T, Harada N. Post-translational dual regulation of aromatase P450 at the catalytic and protein levels by phosphorylation/dephosphorylation. Lid. doi: 10.1111/febs.13021.

  67. Ryde CM, Nicholls JE, Dowsett M. Steroid and growth factor modulation of aromatase activity in MCF7 and T47D breast carcinoma cell lines. Cancer Res. 1992;52:1411–5.

    CAS  PubMed  Google Scholar 

  68. Su B, Wong C, Hong Y, Chen S. Growth factor signaling enhances aromatase activity of breast cancer cells via post-transcriptional mechanisms. J Steroid Biochem Mol Biol. 2011;123:101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I, Bonofiglio D, Catalano S, Ando S. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology. 2012;153:5157–66.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang B, Shozu M, Okada M, Ishikawa H, Kasai T, Murakami K, Nomura K, Harada N, Inoue M. Insulin-like growth factor I enhances the expression of aromatase P450 by inhibiting autophagy. Endocrinology. 2010;151:4949–58.

    Article  CAS  PubMed  Google Scholar 

  71. Harada N, Hatano O. Inhibitors of aromatase prevent degradation of the enzyme in cultured human tumour cells. Br J Cancer. 1998;77:567–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol. 2014;5:103.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Colomer R, Monzo M, Tusquets I, Rifa J, Baena JM, Barnadas A, Calvo L, Carabantes F, Crespo C, Munoz M, Llombart A, Plazaola A, Artells R, Gilabert M, Lloveras B, Alba E. A single-nucleotide polymorphism in the aromatase gene is associated with the efficacy of the aromatase inhibitor letrozole in advanced breast carcinoma. Clin Cancer Res. 2008;14:811–6.

    Article  CAS  PubMed  Google Scholar 

  74. Zins K, Mogg M, Schneeberger C, Abraham D, Schreiber M. Analysis of the rs10046 polymorphism of aromatase (CYP19) in premenopausal onset of human breast cancer. Int J Mol Sci. 2014;15:712–24.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Miron L, Negura L, Peptanariu D, Marinca M. Research on aromatase gene (CYP19A1) polymorphisms as a predictor of endocrine therapy effectiveness in breast cancer. Rev Med Chir Soc Med Nat Iasi. 2012;116:997–1004.

    CAS  PubMed  Google Scholar 

  76. Haiman CA, Dossus L, Setiawan VW, Stram DO, Dunning AM, Thomas G, Thun MJ, Albanes D, Altshuler D, Ardanaz E, Boeing H, Buring J, Burtt N, Calle EE, Chanock S, Clavel-Chapelon F, Colditz GA, Cox DG, Feigelson HS, Hankinson SE, Hayes RB, Henderson BE, Hirschhorn JN, Hoover R, Hunter DJ, Kaaks R, Kolonel LN, Le Marchand L, Lenner P, Lund E, Panico S, Peeters PH, Pike MC, Riboli E, Tjonneland A, Travis R, Trichopoulos D, Wacholder S, Ziegler RG. Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res. 2007;67:1893–7.

    Article  CAS  PubMed  Google Scholar 

  77. Goodman M, Lurie G, Thompson P, McDuffie K, Carney M. Association of two common single-nucleotide polymorphisms in the CYP19A1 locus and ovarian cancer risk. Endocr Relat Cancer. 2008.

    Google Scholar 

  78. Kanda S, Tsuchiya N, Narita S, Inoue T, Huang M, Chiba S, Akihama S, Saito M, Numakura K, Tsuruta H, Satoh S, Saito S, Ohyama C, Arai Y, Ogawa O, Habuchi T. Effects of functional genetic polymorphisms in the CYP19A1 gene on prostate cancer risk and survival. Int J Cancer. 2014.

    Google Scholar 

  79. Kohno T, Kakinuma R, Iwasaki M, Yamaji T, Kunitoh H, Suzuki K, Shimada Y, Shiraishi K, Kasuga Y, Hamada GS, Furuta K, Tsuta K, Sakamoto H, Kuchiba A, Yamamoto S, Kanai Y, Tsugane S, Yokota J. Association of CYP19A1 polymorphisms with risks for atypical adenomatous hyperplasia and bronchioloalveolar carcinoma in the lungs. Carcinogenesis. 2010;31:1794–9.

    Article  CAS  PubMed  Google Scholar 

  80. Lin JH, Manson JE, Kraft P, Cochrane BB, Gunter MJ, Chlebowski RT, Zhang SM. Estrogen and progesterone-related gene variants and colorectal cancer risk in women. BMC Med Genet. 2011;12:78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harada, N. (2015). Structure, Regulation and Polymorphisms of the Aromatase Gene. In: Larionov, A. (eds) Resistance to Aromatase Inhibitors in Breast Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-17972-8_2

Download citation

Publish with us

Policies and ethics