Skip to main content

Nitric Oxide and Plant Hemoglobins Improve the Tolerance of Plants to Hypoxia

  • Chapter
  • First Online:
Nitric Oxide Action in Abiotic Stress Responses in Plants

Abstract

Hemoglobins (Hbs) are heme proteins that are found in most organisms and they have the property to react with O2, CO, and NO. Their structure, size, and function are quite diverse among the different organisms. In plants, three different types of hemoglobins were found: symbiotic (sHb), nonsymbiotic (nsHb), and truncated hemoglobins (trHb). Nonsymbiotic hemoglobins are divided into two classes: class 1 hemoglobins (nsHb-1s), which have a very high affinity for oxygen, and class 2 hemoglobins (nsHb-2s), which have lower affinity for oxygen and are similar to the sHbs. nsHb-1s are expressed under hypoxia and were found to improve the tolerance of plants to hypoxia and maintain the energy status of the plant cells. Class 1 nsHbs improve the tolerance of plants to hypoxia and provide an alternative type of respiration to mitochondrial electron transport. Therefore, nsHb-1 possibly acts as NO dioxygenase in the nsHb/NO cycle which consumes NADH and maintains ATP levels via an as yet unknown mechanism. However, other possible functions of nsHbs cannot be precluded as Hbs have many different functions in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbruzzetti S, Grandi E, Bruno S et al (2007) Ligand migration in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. J Phys Chem B 111:12582–12590

    Article  CAS  PubMed  Google Scholar 

  • Andersson CR, Jensen EO, Llewellyn DJ et al (1996) A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc Natl Acad Sci 93:5682–5687

    Article  CAS  Google Scholar 

  • Appleby CA (1992) The origin and functions of haemoglobin in plants. Sci Prog 76:365–398

    CAS  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Sarath G et al (1997) Rice hemoglobins: gene cloning, analysis and oxygen-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol 115:1259–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Moran JF et al (1998) Plant hemoglobins. Plant Physiol 118:1121–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baudouin E, Pieuchot L, Engler G et al (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19:970–975

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Klucas RV (1992) Oxidation and reduction of leghemoglobin in root nodules of leguminous plants. Plant Physiol 98:1217–1221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonamore A, Farina A, Gattoni M et al (2003) Interaction with membrane lipids and heme ligand binding properties of Escherichia coli flavohemoglobin. Biochemistry 42:5792–5801

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT et al (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Bruno S, Faggiano S, Spyrakis F et al (2007) Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. Gene 398:224–233

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD et al (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, del Rio LA, Barroso JB (2009) Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Galli M, Tischner R et al (2006) Plant nitric oxide synthase: back to square one—response. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R et al (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo P, Lucarelli D, della Longa S et al (2004) Unusual heme iron-lipid acyl chain coordination in Escherichia coli flavohemoglobin. Biophys J 86:3882–3892

    Article  PubMed Central  PubMed  Google Scholar 

  • Dean JE, Harper JV (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • del Rio LA, Copras FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Cur Opin Plant Biol 8:390–396

    Article  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dordas CA (2009) Nonsymbiotichemoglobins and stress tolerance in plants. Plant Sci 176:433–440

    Article  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU et al (2003a) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003b) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    Article  CAS  PubMed  Google Scholar 

  • Duff SMG, Wittenberg JB, Hill RD (1997) Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin: optical spectra and reactions with gaseous ligands. J Biol Chem 272:16746–16752

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Fan TWN, Higashi RM, Lane AN (1988) An in vitro1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch Biochem Biophys 266:592–606

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner PR (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J Inorg Biochem 99:247–266

    Article  CAS  PubMed  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R (2007) Plant hemoglobins: what we know six decades after their discovery. Gene 398:78–85

    Article  CAS  PubMed  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Glaab J, Kaiser WM (1993) Rapid modulation of nitrate reductase in pea roots. Planta 191:173–179

    Article  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origin of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exper Biol 201:1099–1117

    CAS  Google Scholar 

  • He YK, Tang RH, Hao Y et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Igamberdiev AU, Hill RD (2007) Metabolic effects of hemoglobin gene expression in plants. Gene 398:86–93

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Shahb JK, Igamberdiev AU (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol Plant 148:457–469

    Article  CAS  PubMed  Google Scholar 

  • Hill RD (1998) What are hemoglobins doing in plants? Can J Bot 76:707–712

    CAS  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins—what’s happening beyond nitric oxide scavenging? AoB Plants 2012:pls004

    Google Scholar 

  • Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Phys Biochem 46:371–379

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103:259–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Seregelyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Baron K, Manac’h-Little N et al (2005) The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igamberdiev A, Stoimenova M, Seregelyes C, Hill RD (2006a) Class-1 hemoglobin and antioxidant metabolism in alfalfa roots. Planta 223:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006b) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  PubMed  Google Scholar 

  • Jackson MB (1985) Ethylene and the responses of plants to soil waterlogging and submergence. Ann Rev Plant Phys 36:145–174

    Article  CAS  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jeffrey SR, Snyder SH (1995) Nitric oxide: a neural messenger. Ann Rev Cell Dev Biol 11:417–440

    Article  Google Scholar 

  • Kakar S, Hoffman FG, Storz JF et al (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D et al (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kundu S, Premer SA, Hoy JA et al (2003) Direct measurement of equilibrium constants for high-affinity hemoglobins. Biophys J 84:3931–3940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136

    Article  CAS  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L et al (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221:1–4

    Article  CAS  PubMed  Google Scholar 

  • Leach J, Keyster M, Du Plessis M, Ludidi N (2010) Nitric oxide synthase activity is required for development of functional nodules in soybean. J Plant Physiol 167:1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas—nitric oxide—as an endogenous maturation and senescence regulating factor in higher plants. Plant Phys Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Lira-Ruan V, Sarath G, Klucas RV, Arredondo-Peter R (2001) Synthesis of hemoglobins in rice (Oryza sativa var. Jackson) plants growing in normal and stress conditions. Plant Sci 161:279–287

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Jones DM, Bloch KD (1996) The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med 47:365–375

    Article  CAS  PubMed  Google Scholar 

  • Moncada SRMJ, Palmer RML, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharamacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an anti-oxidant in physiological stress. Phys Plant 76:456–459

    Article  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Nie XZ, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ollesch G, AKDJMS-ZUE (1999) Phospholipid bound to the flavohemoprotein from (Alcaligeneseutrophus). Eur J Biochem 262:395–405

    Google Scholar 

  • Parent C, Berger A, Folzer H et al (2008) A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytol 177:142–154

    CAS  PubMed  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC et al (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu ZL, Wang HY, Xia GX (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta-Gene Struct Expr 1730:103–113

    Article  CAS  Google Scholar 

  • Qu ZL, Zhong NQ, Wang HY et al (2006) Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHb1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol 47:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi AC, Bonamore A, Macone A et al (2006) Interaction of Vitreoscilla hemoglobin with membrane lipids. Biochemistry 45:4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Sasakura F, Uchiumi T, Shimoda Y et al (2006) A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Mol Plant-Microbe Interact 19:441–450

    Article  CAS  PubMed  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A et al (2005) Involvement of nonsymbiotic hemoglobin in Mesorhizobium-Lotus symbiosis. Plant Cell Physiol 46:S92

    Article  Google Scholar 

  • Smagghe BJ, Hoy JA, Percifield R et al (2009) Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers 91:1083–1096

    Article  CAS  PubMed  Google Scholar 

  • Sowa A, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci 95:10317–10321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    CAS  PubMed  Google Scholar 

  • Trevaskis B, Watts RA, Andersson C et al (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci 94:12230–12234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vazquez-Limon C, Hoogewijs D, Vinogradov S (2012) The evolution of land plant hemoglobins. Plant Sci 191:71–81

    Article  PubMed  Google Scholar 

  • Voesenek LACJ, BenschopJJ Bou J et al (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding tolerant dicot Rumex palustris. Ann Bot 91:205–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YH, Kochian LV, Doyle JJ, Garvin DF (2003) Two tomato non-symbiotic haemoglobin genes are differentially expressed in response to diverse changes in mineral nutrient status. Plant Cell Environ 26:673–680

    Article  CAS  Google Scholar 

  • Watts RA, Hunt PW, Hvitved AN et al (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci USA 98:10119–10124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    CAS  PubMed  Google Scholar 

  • Weitzberg E, Lundberg JON (1998) Nonenzymatic nitric oxide production in humans. Nitric Oxide-Biol Chem 2:1–7

    Article  CAS  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Bio Med 25:434–456

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1990) Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu Rev Biophys Biophys Chem 19:217–241

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Zemojtel T, Frohlich A, Palmieri MC et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  CAS  PubMed  Google Scholar 

  • Zhang LG, Wang YD, Zhao LQ et al (2006) Involvement of nitric oxide in light-mediated greening of barley seedlings. J Plant Physiol 163:818–826

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Dordas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dordas, C. (2015). Nitric Oxide and Plant Hemoglobins Improve the Tolerance of Plants to Hypoxia. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-17804-2_7

Download citation

Publish with us

Policies and ethics