Advertisement

The Use of Probiotic Bacteria to Treat Recurrent Calcium Oxalate Kidney Stone Disease

  • Brian R. Kullin
  • Sharon J. Reid
  • Valerie R. Abratt

Abstract

Calcium oxalate-based kidney stones are the most common type found amongst idiopathic stone-forming patients. Excess dietary oxalate can be excreted via the faeces as well as the urine, and consumption of oxalate degrading probiotic bacteria might assist in reducing hyperoxaluria by degrading dietary oxalate in the gastrointestinal tract (GIT) before it can be absorbed. This chapter describes the genetic and in vitro aspects of microbial oxalate metabolism, and reviews in vivo trials involving the use of specific probiotic bacteria. Recent novel approaches using ingested purified oxalate degrading enzymes or in vivo expression of recombinant enzymes to reduce hyperoxalauria are also discussed.

In vitro studies have shown that certain Lactobacillus and Bifidobacterium species may have great potential for use as oxalate degrading probiotics since they reduce oxalate but can also survive in the gut under conditions where oxalate is limited. Gut colonisation and in vivo bacterial oxalate utilization studies in humans have shown a similar trend towards reducing oxalate levels. However, most of these interventions have been limited in their scope and need more rigorous investigation to measure their therapeutic value. A recent alternative approach used known amounts of in vitro purified recombinant oxalate decarboxylase enzyme to treat hyperoxaluria in animal models. These showed urinary oxalate degradation and low toxicity. Rats colonised with Lactobacillus plantarum expressing this recombinant enzyme also showed a significant reduction in urinary oxalate. The approaches reviewed here show potential therapeutic value in vitro, but all require extensive further evaluation in well-designed human trials.

Keywords

Urinary Oxalate Urinary Oxalate Excretion Lactic Acid Bacterium Species Kidney Stone Disease Probiotic Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe K, Ruan ZS, Maloney PC. Cloning, sequencing, and expression in Escherichia coli of OxlT, the oxalate:formate exchange protein of Oxalobacter formigenes. J Biol Chem. 1996;271:6789–93.CrossRefPubMedGoogle Scholar
  2. 2.
    Abratt VR, Reid SJ. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol. 2010;72:63–87. doi: 10.1016/S0065-2164(10)72003-7.CrossRefPubMedGoogle Scholar
  3. 3.
    Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014;147:1055–63.e8. doi: 10.1053/j.gastro.2014.07.020.CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Wahsh I, Wu Y, Liebman M. Acute probiotic ingestion reduces gastrointestinal oxalate absorption in healthy subjects. Urol Res. 2012;40:191–6. doi: 10.1007/s00240-011-0421-7.CrossRefPubMedGoogle Scholar
  5. 5.
    Anantharam V, Allison MJ, Maloney PC. Oxalate: formate exchange. The basis for energy coupling in Oxalobacter. J Biol Chem. 1989;264:7244–50.PubMedGoogle Scholar
  6. 6.
    Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS. In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Microbiol. 2013;115:880–7. doi: 10.1111/jam.12269.CrossRefPubMedGoogle Scholar
  7. 7.
    Antonelli JA, Maalouf NM, Pearle MS, Lotan Y. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur Urol. 2014;66:724–9. doi: 10.1016/j.eururo.2014.06.036.CrossRefPubMedGoogle Scholar
  8. 8.
    Azcarate-Peril MA, Bruno-Bárcena JM, Hassan HM, Klaenhammer TR. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl Environ Microbiol. 2006;72:1891–9. doi: 10.1128/AEM.72.3.1891-1899.2006.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Baetz AL, Allison MJ. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J Bacteriol. 1989;171:2605–8.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Baetz AL, Allison MJ. Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes. J Bacteriol. 1990;172:3537–40.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 2001;60:1097–105. doi: 10.1046/j.1523-1755.2001.0600031097.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Coe FL, Favus MJ, Crockett T, Strauss AL, Parks JH, Porat A, Gantt CL, Sherwood LM. Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjects. Am J Med. 1982;72:25–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Cowley AB, Poage DW, Dean RR, Meschter CL, Ghoddusi M, Li Q-S, Sidhu H. 14-day repeat-dose oral toxicity evaluation of oxazyme in rats and dogs. Int J Toxicol. 2010;29:20–31. doi: 10.1177/1091581809353611.CrossRefPubMedGoogle Scholar
  14. 14.
    Dimroth P, Schink B. Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol. 1998;170:69–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, Brigidi P. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol. 2004;70:5066–73. doi: 10.1128/AEM.70.9.5066-5073.2004.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Ferraz RRN, Marques NC, Froeder L, Menon VB, Siliano PR, Baxmann AC, Heilberg IP. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol Res. 2009;37:95–100. doi: 10.1007/s00240-009-0177-5.CrossRefPubMedGoogle Scholar
  17. 17.
    Giardina S, Scilironi C, Michelotti A, Samuele A, Borella F, Daglia M, Marzatico F. In vitro anti-inflammatory activity of selected oxalate-degrading probiotic bacteria: potential applications in the prevention and treatment of hyperoxaluria. J Food Sci. 2014;79:M384–90. doi: 10.1111/1750-3841.12344.CrossRefPubMedGoogle Scholar
  18. 18.
    Goldfarb DS, Modersitzki F, Asplin JR. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin J Am Soc Nephrol. 2007;2:745–9. doi: 10.2215/CJN.00600207.CrossRefPubMedGoogle Scholar
  19. 19.
    Grujic D, Salido EC, Shenoy BC, Langman CB, McGrath ME, Patel RJ, Rashid A, Mandapati S, Jung CW, Margolin AL. Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol. 2009;29:86–93. doi: 10.1159/000151395.CrossRefPubMedGoogle Scholar
  20. 20.
    Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259.CrossRefPubMedGoogle Scholar
  21. 21.
    Iapichino G, Callegari ML, Marzorati S, Cigada M, Corbella D, Ferrari S, Morelli L. Impact of antibiotics on the gut microbiota of critically ill patients. J Med Microbiol. 2008;57:1007–14. doi: 10.1099/jmm.0.47387-0.CrossRefPubMedGoogle Scholar
  22. 22.
    Just VJ, Stevenson CEM, Bowater L, Tanner A, Lawson DM, Bornemann S. A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. J Biol Chem. 2004;279:19867–74. doi: 10.1074/jbc.M313820200.CrossRefPubMedGoogle Scholar
  23. 23.
    Knight J, Deora R, Assimos DG, Holmes RP. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis. 2013;41:187–96. doi: 10.1007/s00240-013-0566-7.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kolandaswamy A, George L, Sadasivam S. Heterologous expression of oxalate decarboxylase in Lactobacillus plantarum NC8. Curr Microbiol. 2009;58:117–21. doi: 10.1007/s00284-008-9286-6.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuhner CH, Hartman PA, Allison MJ. Generation of a proton motive force by the anaerobic oxalate-degrading bacterium Oxalobacter formigenes. Appl Environ Microbiol. 1996;62:2494–500.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Lewanika TR, Reid SJ, Abratt VR, Macfarlane GT, Macfarlane S. Lactobacillus gasseri Gasser AM63T degrades oxalate in a multistage continuous culture simulator of the human colonic microbiota. FEMS Microbiol Ecol. 2007;61:110–20. doi: 10.1111/j.1574-6941.2007.00327.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Liebman M, Al-Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr. 2011;2:254–60. doi: 10.3945/an.111.000414.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lieske JC, Goldfarb DS, De Simone C, Regnier C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 2005;68:1244–9. doi: 10.1111/j.1523-1755.2005.00520.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb DS. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78:1178–85. doi: 10.1038/ki.2010.310.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ljunghall S, Danielson BG. A prospective study of renal stone recurrences. Br J Urol. 1984;56:122–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Lung HY, Baetz AL, Peck AB. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene, oxc, from the bacterium Oxalobacter formigenes. J Bacteriol. 1994;176:2468–72.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Macfarlane S, Macfarlane GT. Bacterial diversity in the human gut. Adv Appl Microbiol. 2004;54:261–89. doi: 10.1016/S0065-2164(04)54010-8.CrossRefPubMedGoogle Scholar
  33. 33.
    Magwira CA, Kullin B, Lewandowski S, Rodgers A, Reid SJ, Abratt VR. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. J Appl Microbiol. 2012;113:418–28. doi: 10.1111/j.1365-2672.2012.05346.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics. 2009;10:425. doi: 10.1186/1471-2164-10-425.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Mathiesen G, Sveen A, Piard J-C, Axelsson L, Eijsink VGH. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J Appl Microbiol. 2008;105:215–26. doi: 10.1111/j.1365-2672.2008.03734.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Mogna L, Pane M, Nicola S, Raiteri E. Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans? J Clin Gastroenterol. 2014;48 Suppl 1:S91–5. doi: 10.1097/MCG.0000000000000228.CrossRefPubMedGoogle Scholar
  37. 37.
    Mufarrij PW, Lange JN, Knight J, Assimos DG, Holmes RP. The effects of Oxazyme on oxalate degradation: results and implications of in vitro experiments. J Endourol. 2013;27:284–7. doi: 10.1089/end.2012.0214.CrossRefPubMedGoogle Scholar
  38. 38.
    Murphy C, Murphy S, O’Brien F, O’Donoghue M, Boileau T, Sunvold G, Reinhart G, Kiely B, Shanahan F, O’Mahony L. Metabolic activity of probiotics-oxalate degradation. Vet Microbiol. 2009;136:100–7. doi: 10.1016/j.vetmic.2008.10.005.CrossRefPubMedGoogle Scholar
  39. 39.
    Okombo J, Liebman M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol Res. 2010;38:169–78. doi: 10.1007/s00240-010-0262-9.CrossRefPubMedGoogle Scholar
  40. 40.
    Pang R, Linnes MP, O’Connor HM, Li X, Bergstralh E, Lieske JC. Controlled metabolic diet reduces calcium oxalate supersaturation but not oxalate excretion after bariatric surgery. Urology. 2012;80:250–4. doi: 10.1016/j.urology.2012.02.052.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Peterson CT, Sharma V, Elmén L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179:363–77. doi: 10.1111/cei.12474.CrossRefPubMedGoogle Scholar
  42. 42.
    Reinhardt LA, Svedruzic D, Chang CH, Cleland WW, Richards NGJ. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. J Am Chem Soc. 2003;125:1244–52. doi: 10.1021/ja0286977.CrossRefPubMedGoogle Scholar
  43. 43.
    Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12:e86–96.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ruan ZS, Anantharam V, Crawford IT, Ambudkar SV, Rhee SY, Allison MJ, Maloney PC. Identification, purification, and reconstitution of OxlT, the oxalate: formate antiport protein of Oxalobacter formigenes. J Biol Chem. 1992;267:10537–43.PubMedGoogle Scholar
  45. 45.
    Sasikumar P, Gomathi S, Anbazhagan K, Abhishek A, Paul E, Vasudevan V, Sasikumar S, Selvam GS. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci. 2014;21:86. doi: 10.1186/s12929-014-0086-y.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Sasikumar P, Gomathi S, Anbazhagan K, Baby AE, Sangeetha J, Selvam GS. Genetically engineered Lactobacillus plantarum WCFS1 constitutively secreting heterologous oxalate decarboxylase and degrading oxalate under in vitro. Curr Microbiol. 2014;69:708–15. doi: 10.1007/s00284-014-0644-2.CrossRefPubMedGoogle Scholar
  47. 47.
    Sasikumar P, Gomathi S, Anbazhagan K, Selvam GS. Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int. 2013;2013:280432. doi: 10.1155/2013/280432.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Sidhu H, Ogden SD, Lung HY, Luttge BG, Baetz AL, Peck AB. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes. J Bacteriol. 1997;179:3378–81.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Siener R, Bade DJ, Hesse A, Hoppe B. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J Transl Med. 2013;11:306. doi: 10.1186/1479-5876-11-306.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Sørvig E, Grönqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L. Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett. 2003;229:119–26.CrossRefPubMedGoogle Scholar
  51. 51.
    Svedruzić D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NGJ. Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys. 2007;464:36–47. doi: 10.1016/j.abb.2007.03.016.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Tanner A, Bornemann S. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J Bacteriol. 2000;182:5271–3.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. 2008;3:1453–60. doi: 10.2215/CJN.01410308.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Turroni S, Bendazzoli C, Dipalo SCF, Candela M, Vitali B, Gotti R, Brigidi P. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl Environ Microbiol. 2010;76:5609–20. doi: 10.1128/AEM.00844-10.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, Pirovano F, Brigidi P. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol. 2007;103:1600–9. doi: 10.1111/j.1365-2672.2007.03388.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Ursell LK, Van Treuren W, Metcalf JL, Pirrung M, Gewirtz A, Knight R. Replenishing our defensive microbes. Bioessays. 2013;35:810–7. doi: 10.1002/bies.201300018.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Worcester EM, Coe FL. Clinical practice. Calcium kidney stones. N Engl J Med. 2010;363:954–63. doi: 10.1056/NEJMcp1001011.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Yadav AK, Tyagi A, Kumar A, Saklani AC, Grover S, Batish VK. Adhesion of indigenous Lactobacillus plantarum to gut extracellular matrix and its physicochemical characterization. Arch Microbiol. 2014. doi: 10.1007/s00203-014-1034-7.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brian R. Kullin
    • 1
  • Sharon J. Reid
    • 1
  • Valerie R. Abratt
    • 1
  1. 1.Molecular and Cell BiologyUniversity of Cape TownRondebosch Cape TownSouth Africa

Personalised recommendations