Bearings-Only Rendezvous with Enhanced Performance

  • Jonathan GrzymischEmail author
  • Walter Fichter
  • Damiana Losa
  • Massimo Casasco


Employing only bearing/angular measurements for navigation during the far to medium range rendezvous with a non-cooperative target has several advantages with respect to directly measuring the range using active sensors such as RADAR or LIDAR. Angular measurements can be acquired using simple sensors such as a single optical camera, significantly reducing the mass and power requirements. Nevertheless, several challenges arise form the lack of a direct range measurement, which renders the problem instantaneously unobservable. The execution of known maneuvers is thus necessary to introduce observability in the estimation problem, which results in the navigation performance being directly dependent on the trajectory followed. A few single-maneuver schemes have been proposed to enhance bearings-only navigation performance. Nonetheless, little research has been published on the use of on-line trajectory optimization methods accounting for observability on the complete rendezvous trajectory. This paper presents the non-linear simulation results of a Model Predictive Control architecture for rendezvous that simultaneously enhances bearings-only observability in order to improve navigation performance. A detailed simulation environment provided by Thales Alenia Space France is used to show that the proposed scheme based on linearized equations displays satisfactory performance in a higher fidelity non-linear environment, when observability is considered in the trajectory optimization.


Trajectory Optimization Model Predictive Control Navigation Performance Model Predictive Control Algorithm Hold Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aida, S., Patzelt, T., Leushacke, L., Kirschner, M., Kiehling, R.: Monitoring and Mitigation of Close Proximities in Low Earth Orbit. In: 21st International Symposium on Space Flight Dynamics, vol. 49 (2009)Google Scholar
  2. 2.
    Betts, J.T.: Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control, and Dynamics 21(2), 193–207 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    D’Amico, S., Ardaens, J.-S., Gaias, G., Benninghoff, H., Schlepp, B., Jørgensen, J.L.: Noncooperative Rendezvous Using Angles-Only Optical Navigation: System Design and Flight Results. Journal of Guidance, Control, and Dynamics 36(6), 1576–1595 (2013)CrossRefGoogle Scholar
  4. 4.
    Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization 14(1), 63–69 (1997)CrossRefGoogle Scholar
  5. 5.
    de Bruijn, F., Gill, E., How, J.: Comparative Analysis of Cartesian and Curvilinear Clohessy-Wiltshire Equations. Journal of Aerospace Engineering, Sciences and Applications 3(2), 1–15 (2011)CrossRefGoogle Scholar
  6. 6.
    Fehse, W.: Automated Rendezvous and Docking of Spacecraft. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  7. 7.
    Gaias, G., D’Amico, S., Ardaens, J.-S.: Angles-only Navigation to a Non-Cooperative Satellite using Relative Orbital Elements. In: AIAA/AAS Astrodynamics Specialist Conference, Reston, Virigina. American Institute of Aeronautics and Astronautics (August 2012)Google Scholar
  8. 8.
    Gaias, G., D’Amico, S., Ardaens, J.S.: Angles-Only Navigation to a Noncooperative Satellite Using Relative Orbital Elements. Journal of Guidance, Control, and Dynamics 37(2), 439–451 (2014)CrossRefGoogle Scholar
  9. 9.
    Grzymisch, J., Fichter, W., Casasco, M., Losa, D.: A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter. In: Advances in Aerospace Guidance, Navigation and Control, pp. 215–231 (2013)Google Scholar
  10. 10.
    Grzymisch, J., Fichter, W.: Analytic Optimal Observability Maneuvers for In-Orbit Bearings-Only Rendezvous. Journal of Guidance, Control, and Dynamics 37(5), 1658–1664 (2014)CrossRefGoogle Scholar
  11. 11.
    Grzymisch, J., Fichter, W.: Observability Criteria and Unobservable Maneuvers for In-Orbit Bearings-Only Navigation. Journal of Guidance, Control, and Dynamics, 1–10 (January 2014)Google Scholar
  12. 12.
    Grzymisch, J., Fichter, W.: Optimal Rendezvous Guidance with Enhanced Bearings-Only Observability. Journal of Guidance, Control, and Dynamics (2014) (under review)Google Scholar
  13. 13.
    Li, J., Li, H., Tang, G., Luo, Y.: Research on the Strategy of Angles-Only Relative Navigation for Autonomous Rendezvous. Science China Technological Sciences 54(7), 1865–1872 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Losa, D., Le-Peuvedic, C.: Simulator of a Chaser and Target Satellite Dynamics in Earth Environment. Thales Alenia Space TR 01 (2014)Google Scholar
  15. 15.
    Richards, A., How, J.: Performance Evaluation of Rendezvous Using Model Predictive Control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, pp. 1–9 (August 2003)Google Scholar
  16. 16.
    Richards, A., Schouwenaars, T., How, J.P., Feron, E.: Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming. Journal of Guidance, Control, and Dynamics 25(4), 755–764 (2002)CrossRefGoogle Scholar
  17. 17.
    Wassel, D., Buskens, C.: Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol. 73 (2013)Google Scholar
  18. 18.
    Wassel, D., Wolff, F., Vogelsang, J., Büskens, C.: The ESA NLP-Solver WORHP – Recent Developments and Applications. In: International Conference on Astrodynamic Tools and Techniques (2012)Google Scholar
  19. 19.
    Woffinden, D.C., Geller, D.K.: Optimal Orbital Rendezvous Maneuvering for Angles-Only Navigation. Journal of Guidance, Control, and Dynamics 32(4), 1382–1387 (2009)CrossRefGoogle Scholar
  20. 20.
    Woffinden, D.C., Geller, D.K.: Observability Criteria for Angles-Only Navigation. IEEE Transactions on Aerospace and Electronic Systems 45(3), 1194–1208 (2009)CrossRefGoogle Scholar
  21. 21.
    Yamanaka, K., Ankersen, F.: New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit. Journal of Guidance, Control, and Dynamics 25(1), 60–66 (2002)CrossRefGoogle Scholar
  22. 22.
    Yim, J.R., Crassidis, J., Junkins, J.L.: Autonomous orbit navigation of two spacecraft system using relative line of sight vector measurements. Advances in the Astronautical Sciences AAS 04-257, 1–14 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jonathan Grzymisch
    • 1
    Email author
  • Walter Fichter
    • 1
  • Damiana Losa
    • 2
  • Massimo Casasco
    • 3
  1. 1.Institute of Flight Mechanics and ControlUniversity of StuttgartStuttgartGermany
  2. 2.Research and Technology DepartmentThales Alenia SpaceCannesFrance
  3. 3.European Space Technology CentreEuropean Space AgencyNoordwijkThe Netherlands

Personalised recommendations