Skip to main content
Log in

Research on the strategy of angles-only relative navigation for autonomous rendezvous

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper considers the problem of angles-only relative navigation for autonomous rendezvous. Methods for determining degree of observability (DOO) and latent range information of orbital maneuver are proposed for analyzing and enhancing the precision of relative position and velocity estimation. The equations of angles-only relative navigation are set forth on the condition that optical camera is the only viable sensor for relative measurement, and expressions for the DOO of relative navigation are obtained by using the Newton iterative method. The latent range information of orbital maneuver is analyzed, which is employed to enhance the DOO of angles-only relative navigation. Simulation result shows that DOO is effective to describe the observability level of relative position and velocity, and the latent range information is useful in enhancing the DOO of the angles-only relative navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fehse W. Automated Rendezvous and Docking of Spacecraft. Cambridge: Cambridge University Press, 2003

    Book  Google Scholar 

  2. Tang G J, Luo Y Z, Zhang J. Mission Planning for Space Rendezvous and Docking (in Chinese). Beijing: Science Press, 2008

    Google Scholar 

  3. Lin L X. The Technology of Space Rendezvous and Docking (in Chinese). Beijing: Publisher of National Defense Industry, 1995

    Google Scholar 

  4. Woffinden D C, Geller D K. Navigating the road to autonomous orbital rendezvous. J Spacecraft Rocket, 2007, 44(4): 898–909

    Article  Google Scholar 

  5. Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous. J Aeros Sci, 1960, 27(9): 653–658

    Google Scholar 

  6. Hablani H B, Tapper M L, Bashian D D. Guidance algorithms for autonomous rendezvous of spacecraft with a target vehicle in circular orbit. J Guid, Contr, Dynam, 2002, 25(3): 553–562

    Article  Google Scholar 

  7. Hablani H B. Autonomous relative navigation, attitude determination, pointing and tracking for spacecraft rendezvous. AIAA 2003-5355, 2003

  8. Liu T, Xie Y C. A study on relative navigation for spacecraft rendezvous with a noncooperative target (in Chinese). Aerosp Contr, 2006, 24(2): 48–53

    Google Scholar 

  9. Zhao C S, Qin Y Y, Wang X Z, et al. Indirect measurement-based relative navigation (in Chinese). J Astron, 2008, 29(3): 864–867

    Google Scholar 

  10. Liu Y, Xu S J. Relative navigation for non-cooperative spacecraft based on second step multiple model estimation (in Chinese). J Astron, 2008, 29(2): 576–580

    Google Scholar 

  11. Nardone S C, Aidala V J. Observability criteria for bearings-only tracking. IEEE T Aero Elec Sys, 1981, 17(2): 162–166

    Article  MathSciNet  Google Scholar 

  12. Nardone S C, Graham M L. A closed-form solution to bearings-only target motion analysis. IEEE J Ocean Eng, 1997, 22(1): 168–178

    Article  Google Scholar 

  13. Passerieux J M, Cappel D V. Optimal observer maneuver for bearings-only tracking. IEEE T Aero Elec Sys, 1998, 34(3): 777–788

    Article  Google Scholar 

  14. Oshman Y, Davidson P. Optimization of observer trajectories for bearings-only target localization. IEEE T Aero Elec Sys, 1999, 35(3): 892–902

    Article  Google Scholar 

  15. Chari R J V. Autonomous Orbital Rendezvous Using Angles-only Navigation. Dissertation of Masteral Degree. Boston: MIT, 2001

    Google Scholar 

  16. Wodffinden D C, Geller D K. Relative angles-only navigation and pose estimation for autonomous orbital rendezvous. J Guid, Contr, Dynam, 2007, 30(5): 1455–1469

    Article  Google Scholar 

  17. Wodffinden D C, Geller D K. Observability criteria for angles-only navigation. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Mackinac Island, MI, 2007. 07-402

  18. Wodffinden D C, Geller D K. Optimal orbital rendezvous maneuvering for angles-only navigation. J Guid, Contr, Dynam, 2009, 32(4): 1382–1387

    Article  Google Scholar 

  19. Wodffinden D C. Angles-only navigation for autonomous orbital rendezvous. Dissertation of Doctoral Degree. Logan UT: Utah State Univ, 2008

    Google Scholar 

  20. Schmidt J, Lovell T A. Estimating geometric aspects of relative satellite motion using angles-only measurements. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, 2008. 08-6604

  21. Cheng X H, Wan D J, Zhong X. Study on observability and its degree of strapdown inertial navigation system (in Chinese). J Southeast U, 1997, 27(6): 6–11

    Google Scholar 

  22. Liu B Q, Fang J C. A new adaptive feedback kalman filter based on-observability analysis for SINS/GPS (in Chinese). Aeronautica et Astronautica Sinica, 2008, 29(2): 430–436.

    MathSciNet  Google Scholar 

  23. Liu Z, Chen Z. Application of condition number in analysis observability of system (in Chinese). J Syst Simul, 2004, 16(7): 1552–1555

    Google Scholar 

  24. Sun Z K, Zhou Y Y, He L X. Single/Multibase Active and Passive Location Technology (in Chinese). Beijing: National Defence Industry Press, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiYang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, H., Tang, G. et al. Research on the strategy of angles-only relative navigation for autonomous rendezvous. Sci. China Technol. Sci. 54, 1865–1872 (2011). https://doi.org/10.1007/s11431-011-4442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4442-9

Keywords

Navigation