Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1006 Accesses

Abstract

The characteristics of TBCs are very different from that of the bulk material. Apart from the presence of several defects present in plasma-sprayed coatings, the splat interfaces present in coatings are rough, resulting in multiple contact points ranging from micrometre to nanometre scale. These contact points can have very different bonding characteristics. These features have a significant implication on the macroscale properties of TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curry N, Donoghue J (2012) Evolution of thermal conductivity of dysprosia stabilised thermal barrier coating systems during heat treatment. Surf Coat Technol 2019:38–43

    Article  Google Scholar 

  2. Dwivedi G (2011) On the anelastic behavior of plasma sprayed ceramic coatings: observations, characterizations and applications. Ph.D. thesis, Stony Brook University, USA

    Google Scholar 

  3. Curry N (2014) Design of thermal barrier coatings. Ph.D. thesis, University West, Sweden, No. 3.

    Google Scholar 

  4. Friis M (2002) A methodology to control the microstructure of plasma sprayed coatings. Ph.D. thesis, Lund University, Sweden

    Google Scholar 

  5. Hasselman DPH (1978) Effect of cracks on thermal conductivity. J Compos Mater 12:403–407

    Article  Google Scholar 

  6. Golosnoy IO, Cipitria A, Clyne TW (2009) Heat transfer through plasma-sprayed thermal barrier coatings in Gas turbines: a review of recent work. J Therm Spray Technol 18(5–6):809–821

    Article  Google Scholar 

  7. Klemens PG (1969) Theory of thermal conductivity in solids. In: Thermal conductivity, vol. 1, Tye RP (ed.) Academic, London, pp 1–68

    Google Scholar 

  8. Pawlowski L, Fauchais P (1992) Thermal transport properties of thermally sprayed coatings. Int Mater Rev 37(6):271–289

    Article  Google Scholar 

  9. Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Mater Sci Eng A 245(2):143–149

    Article  Google Scholar 

  10. Nicholls JR, Lawsona KJ, Johnstone A, Rickerby DS (2002) Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol 151–152:383–391

    Article  Google Scholar 

  11. Golosnoy IO, Tripas SA, Clyne TW (2005) An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings. J Therm Spray Technol 14(2):205–214

    Article  Google Scholar 

  12. Lim G, Kar A (2009) Modeling of thermal barrier coating temperature due to transmissive radiative heating. J Mater Sci 44:3589–3599

    Article  Google Scholar 

  13. Clyne TW, Gill SC (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5(4):401–418

    Article  Google Scholar 

  14. Matejicek J, Sampath S, Dubsky J (1998) X-ray residual stress measurement in metallic and ceramic plasma sprayed coatings. J Therm Spray Technol 7(4):489–496

    Article  Google Scholar 

  15. Matejicek J, Sampath S, Brand PC, Prask HJ (1999) Quenching, thermal and residual stress in plasma sprayed deposits: NiCrAlY and YSZ coatings. Acta Mater 47(2):607–617

    Article  Google Scholar 

  16. Kroupa F (2007) Nonlinear behavior in compression and tension of thermally sprayed ceramic coatings. J Therm Spray Technol 16(1):84–95

    Article  Google Scholar 

  17. Guo S, Kagawa Y (2004) Young’s moduli of zirconia top-coat and thermally grown oxide in a plasma-sprayed thermal barrier coating system. Scr Mater 50:1401–1406

    Article  Google Scholar 

  18. Sevostianov I, Kachanov M (2001) Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations. Mater Sci Eng A 297(1–2):235–243

    Article  Google Scholar 

  19. Matejicek J, Sampath S (2003) In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings Part 1: apparatus and analysis. Acta Mater 51:863–872

    Article  Google Scholar 

  20. Liu Y, Nakamura T, Srinivasan V, Vaidya A, Gouldstone A, Sampath S (2007) Non-linear elastic properties of plasma-sprayed zirconia coatings and associated relationships with processing conditions. Acta Mater 55(14):4667–4678

    Article  Google Scholar 

  21. Liu YJ, Nakamura T, Dwivedi G, Valarezo A, Sampath S (2008) Anelastic behavior of plasma-sprayed Zirconia coatings. J Am Ceram Soc 91(12):4036–4043

    Article  Google Scholar 

  22. Nakamura T, Liu YJ (2007) Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int J Solids Struct 44(6):1990–2009

    Article  Google Scholar 

  23. Nusair Khan A, Lu J, Liao H (2003) Effect of residual stresses on air plasma sprayed thermal barrier coatings. Surf Coat Technol 168:291–299

    Article  Google Scholar 

  24. Daroonparvar M, Hussain MS, Yajid MAM (2012) The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air. Appl Surf Sci 261:287–297

    Article  Google Scholar 

  25. Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Teneze K (2008) Parameters controlling liquid plasma spraying solutions, sols, or suspensions. J Therm Spray Technol 17(1):31–59

    Article  Google Scholar 

  26. Nowak W, Naumenko D, Mor G, Mor F, Mack DE, Vassen R, Singheiser L, Quadakkers WJ (2014) Effect of processing parameters on MCrAlY bondcoat roughness and lifetime of APS–TBC systems. Surf Coat Technol 260:82–89

    Article  Google Scholar 

  27. Rajasekaran B, Mauer G, Vaßen R (2011) Enhanced characteristics of HVOF-sprayed MCrAlY bond coats for TBC applications. J Therm Spray Technol 20(6):1209–1216

    Article  Google Scholar 

  28. Vaßen R, Kerkhoff G, Stöver D (2001) Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Mater Sci Eng A 303:100–109

    Article  Google Scholar 

  29. Eriksson R, Sjöström S, Brodin H, Johansson S, Östergren L, Li X-H (2013) TBC bond coat–top coat interface roughness: Influence on fatigue life and modelling aspects. Surf Coat Technol 236:230–238

    Article  Google Scholar 

  30. Curry N, Markocsan N, Östergren L, Li X-H, Dorfman M (2013) Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J Therm Spray Technol 22(6):864–872

    Article  Google Scholar 

  31. Pindera M-J, Aboudi J, Arnold SM (2000) The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Mater Sci Eng A 284:158–175

    Article  Google Scholar 

  32. Jinnestrand M, Sjöström S (2001) Investigation by 3D FE simulations of delamination crack initiation in TBC caused by alumina growth. Surf Coat Technol 135:188–195

    Article  Google Scholar 

  33. Gupta M, Eriksson R, Sand U, Nylén P (2014) A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf Coat Technol. doi 10.1016/j.surfcoat.2014.12.043

    Google Scholar 

  34. Vaßen R, Giesen S, Stöver D (2009) Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results. J Therm Spray Technol 18(5–6):835–845

    Article  Google Scholar 

  35. Bäker M (2012) Finite element simulation of interface cracks in thermal barrier coatings. Comput Mater Sci 64:79–93

    Article  Google Scholar 

  36. Ahrens M, Vaßen R, Stöver D (2002) Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness. Surf Coat Technol 161:26–35

    Article  Google Scholar 

  37. Busso EP, Lin J, Sakurai S, Nakayama M (2001) A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: model formulation. Acta Mater 49:1515–1528

    Article  Google Scholar 

  38. Yuan K (2014) Oxidation and corrosion of new MCrAlX coatings: modelling and experiments. Ph.D. thesis, Linköping University, Sweden

    Google Scholar 

  39. Chen WR, Wu X, Marple BR, Patnaik PC (2006) The growth and influence of thermally grown oxide in a thermal barrier coating. Surf Coat Technol 201:1074–1079

    Article  Google Scholar 

  40. Haynes JA, Rigney ED, Ferber MK, Porter WD (1996) Oxidation and degradation of a plasma-sprayed thermal barrier coating system. Surf Coat Technol 86–87:102–108

    Article  Google Scholar 

  41. Hille TS, Turteltaub S, Suiker ASJ (2011) Oxide growth and damage evolution in thermal barrier coatings. Eng Fract Mech 78:2139–2152

    Article  Google Scholar 

  42. Ma K, Schoenung JM (2011) Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO. Surf Coat Technol 205:5178–5185

    Article  Google Scholar 

  43. Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205:938–942

    Article  Google Scholar 

  44. Drexler JM, Chen C-H, Gledhill AD, Shinoda K, Sampath S, Padture NP (2012) Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf Coat Technol 206:3911–3916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Gupta, M. (2015). Characteristics of TBCs. In: Design of Thermal Barrier Coatings. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17254-5_3

Download citation

Publish with us

Policies and ethics