Skip to main content

Shock Waves in Relaxing Condensed Media

  • Conference paper
29th International Symposium on Shock Waves 1 (ISSW 2013)

Included in the following conference series:

  • 1281 Accesses

Abstract

The shock-wave method is a powerful tool for studying behavior of materials at extremely short load durations and extremely high rates of compression and tension [1, 2]. The subjects of measurements and analysis in these experiments are the shock compression waves, rarefaction waves, as well as wave interactions. The structural transformations, elastic-plastic transition, and fracture are accompanied by changes in material compressibility and, as a consequence, manifest themselves in the structure of the compression and rarefaction waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanel, G.I., Razorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter, vol. 320. Springer, New York (2004)

    Book  Google Scholar 

  2. Kanel, G.I., Fortov, V.E., Razorenov, S.V.: Shock Waves in Condensed-State Physics. Physics - Uspekhi 50(8), 771–791 (2007)

    Article  MATH  ADS  Google Scholar 

  3. Antoun, T., Seaman, L., Curran, D.R., Kanel, G.I., Razorenov, S.V.: Spall Fracture, vol. 404. Springer, New York (2003)

    Google Scholar 

  4. Duvall, G.E.: Propagation of plane shock waves in a stress-relaxing medium. In: Kolsky, H., Prager, W. (eds.) Stress Waves in Anelastic Solids, pp. 20–32. Springer, Berlin (1964)

    Google Scholar 

  5. Asay, J.R., Fowles, G.R., Gupta, Y.: Determination of Material Relaxation Properties from Measurements on Decaying Elastic Shock Fronts. Journal 43, 744 (1972)

    Google Scholar 

  6. Ashitkov, S.I., Agranat, M.B., Kanel, G.I., Komarov, P.S., Fortov, V.E.: Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses. JETP Letters 92(8), 516–520 (2010)

    Article  ADS  Google Scholar 

  7. Swegle, J.W., Grady, D.E.: Shock Viscosity and the Prediction of Shock Wave Rise Times. J. Appl. Phys. 58, 692 (1985)

    Article  ADS  Google Scholar 

  8. Zaretsky E.B., Kanel G.I.: Plastic Flow in Shock-Loaded Silver at Strain Rates from 104 s− 1 to 107 s− 1 and Temperatures from 296 K to 1233 K. J. Appl. Phys. 110 (7), 073502, (2011)

    Google Scholar 

  9. Zaretsky, E.B., Kanel, G.I.: Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression, J. J. Appl. Phys. 112, 73504 (2012)

    Article  Google Scholar 

  10. Ashitkov, S.I., Agranat, M.B., Kanel, G.I., Fortov, V.E.: Approaching the Ultimate Shear and Tensile Strength of Aluminum in Experiments with Femtosecond Pulse Laser. In: Elert, M.L. (ed.) AIP Conf. Proc. Shock Compression of Condensed Matter 2011, vol. 1426, pp. 1081–1084 (2012)

    Google Scholar 

  11. Zaretsky, E.B., Kanel, G.I.: High-strain-rate response of copper to shock-wave loading at temperatures up to the melting point. J. Appl. Phys. 112 (in print 2012)

    Google Scholar 

  12. Kanel, G.I.: Spall fracture: methodological aspects, mechanisms and governing factors. Int. J. Fract. 163(1-2), 173–191 (2010)

    Article  MATH  Google Scholar 

  13. Utkin, A.V.: Influence of the Initial Damage Rate on the Forming Spall Pulse. J. Appl. Mech. Tech. Phys (USSR) 34, 578–584 (1993)

    Article  ADS  Google Scholar 

  14. Savinykh, A.S., Kanel, G.I., Razorenov, S.V., Rumyantsev, V.I.: Evolution of shock waves in SiC ceramic. Tech. Phys. 58(7) (in print 2013)

    Google Scholar 

  15. Kanel, G.I., Nellis, W.J., Savinykh, A.S., Razorenov, S.V., Rajendran, A.M.: Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16 to 86 GPa. J. Appl. Phys. 106, 43524 (2009)

    Article  Google Scholar 

  16. Savinykh, A.S., Kanel, G.I., Razorenov, S.V.: Spall Fracture in Sapphire. Technical Physics Letters 37 (4), 294-297 (2011)

    Google Scholar 

  17. Savinykh, A.S., Kanel, G.I., Razorenov, S.V.: Strength and failure of LK7 borosilicate glass under shock compression. Technical Physics 55(6), 839–843 (2010)

    Article  ADS  Google Scholar 

  18. Kanel, G.I., Bogatch, A.A., Razorenov, S.V.: Zhen Chen: Transformation of shock compression pulses in glass due to the failure wave phenomena. J. Appl. Phys. 92(9), 5045–5052 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kanel, G.I. (2015). Shock Waves in Relaxing Condensed Media. In: Bonazza, R., Ranjan, D. (eds) 29th International Symposium on Shock Waves 1. ISSW 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-16835-7_8

Download citation

Publish with us

Policies and ethics