Skip to main content
  • 588 Accesses

Abstract

The functional capacity of any tissue is dependent on its ability to perform work. It is possible to assess this ability through the knowledge of changes in the oxygen balance, that is, the ratio of oxygen supply to oxygen demand by the tissue. Monitoring of mitochondrial NADH redox state is sensitive to changes in oxygen supply as well as oxygen balance. The addition of microcirculatory blood flow and hemoglobin oxygenation to the real-time monitoring of NADH has significant value in understanding the development of tissue pathophysiology. The same approach could be applied as a practical clinical tool or device in patient monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barcroft J (1914) The respiratory function of blood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Mayevsky A (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev 7:49–68

    Article  CAS  Google Scholar 

  3. Mayevsky A, Chance B (1982) Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217:537–540

    Article  CAS  PubMed  Google Scholar 

  4. Pittman RN (2011) Oxygen gradients in the microcirculation. Acta Physiol 202:311–322. doi:10.1111/j.1748-1716.2010.02232.x

    Article  CAS  Google Scholar 

  5. Schober P, Schwarte LA (2012) From system to organ to cell: oxygenation and perfusion measurement in anesthesia and critical care. J Clin Monit Comput 26:255–265. doi:10.1007/s10877-012-9350-4

    Article  PubMed Central  PubMed  Google Scholar 

  6. Harms FA, Bodmer SIA, Raat NJH, Stolker RJ, Mik EG (2012) Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements in the skin. Opt Lett 37:2625–2627

    Article  CAS  PubMed  Google Scholar 

  7. Springett R, Swartz HM (2007) Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal 9:1295–1301. doi:10.1089/ars.2007.1620

    Article  CAS  PubMed  Google Scholar 

  8. Wilson DF (2008) Quantifying the role of oxygen pressure in tissue function. Am J Physiol Heart Circ Physiol 294:H11–H13. doi:10.1152/ajpheart.01293.2007

    Article  CAS  PubMed  Google Scholar 

  9. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Oxygen transport to tissue. Adv Exp Med Biol 37A:277–292

    CAS  PubMed  Google Scholar 

  10. Lubbers DW (1995) Optical sensors for clinical monitoring. Acta Anaesth Scand Suppl 39(104):37–54

    Article  Google Scholar 

  11. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. In: Nord FF (ed) Advances in enzymology, XVIIth edn. Interscience, New York, pp 65–134

    Google Scholar 

  12. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol 37A:277–292

    CAS  PubMed  Google Scholar 

  13. Chance B, Legallias V, Sorge J, Graham N (1975) A versatile time-sharing multichannel spectrophotometer reflectometer and fluorometer. Anal Biochem 66:498–514

    Article  CAS  PubMed  Google Scholar 

  14. Mayer D, Chance B, Legallias V (1971) Time-sharing in spectrophotometry and fluorometry. Probes of structure and function of macromolecules and membranes. In: Probes and membranes function, vol 1. Academic Press, New York, pp 527–534

    Google Scholar 

  15. Hassinen I, Jamsa T (1982) A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal Biochem 120:365–372

    Article  CAS  PubMed  Google Scholar 

  16. Mandel LJ, Riddle TG, LaManna JC (1976) A rapid scanning spectrophotometer and fluorometer for in vivo monitoring of steady state and kinetic optical properties of respiratory enzymes. In: Jobsis FF (ed) Oxygen and physiological function. Profession Information Library, Dallas, pp 79–89

    Google Scholar 

  17. Chance B, Schoener B (1966) Fluorometric studies of flavin component of the respiratory chain. In: Slater EC (ed) Flavins and flavoproteins. Elsevier, New York, pp 510–519

    Google Scholar 

  18. Chance B (1972) The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium. FEBS Lett 26(1):315–319

    Article  CAS  PubMed  Google Scholar 

  19. Kunz WS, Gellerich FN (1993) Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain. Biochem Med Metab Biol 50(1):103–110

    Article  CAS  PubMed  Google Scholar 

  20. Rehncrona S, Mela L, Chance B (1979) Cerebral energy state, mitochondrial function, and redox state measurements in transient ischemia. Fed Proc 38:2489–2492

    CAS  PubMed  Google Scholar 

  21. Silberstein BR, Mayevsky A, Chance B (1978) Metabolic responses of the gerbil brain cortex to anoxia, spreading depression, carotid occlusion and stroke, 11th edn. Academic Press, New York

    Google Scholar 

  22. Silberstein BR, Mayevsky A, Chance B (1980) Flying spot studies of brain flavoproteins in the gerbil. Neurol Res 2(1):19–34

    CAS  PubMed  Google Scholar 

  23. Barlow CH, Harden WR III, Harken AH, Simson MB, Haselgrove JC, Chance B, O’Connor M, Austin G (1979) Fluorescence mapping of mitochondrial redox changes in heart and brain. Crit Care Med 7(9):402–406

    Article  CAS  PubMed  Google Scholar 

  24. Williamson JR, Safer B, LaNoue KF, Smith CM, Walajtys E (1973) Mitochondrial–cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol 27:241–281

    CAS  PubMed  Google Scholar 

  25. Koke JR, Wylie W, Wills M (1981) Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells. Cytobios 32(127-128):139–145

    CAS  PubMed  Google Scholar 

  26. Nuutinen EM, Hiltunen JK, Hassinen IE (1981) The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium. FEBS Lett 128(2):356–360

    Article  CAS  PubMed  Google Scholar 

  27. Paddle BM (1985) A cytoplasmic component of pyridine nucleotide fluorescence in rat diaphragm: evidence from comparisons with flavoprotein fluorescence. Pflugers Arch 404:326–331

    Article  CAS  PubMed  Google Scholar 

  28. Paddle BM (1988) A scanning fluorometer for imaging ischaemic areas in traumatized muscle. J Trauma 28(1):S189–S193

    Article  CAS  PubMed  Google Scholar 

  29. Olgin J, Connett RJ, Chance B (1986) Mitochondrial redox changes during rest-work transition in dog gracilis muscle. Adv Exp Med Biol 200:545–554

    CAS  PubMed  Google Scholar 

  30. Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 244(9):2317–2324

    CAS  PubMed  Google Scholar 

  31. Rocheleau JV, Head WS, Piston DW (2004) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279(30):31780–31787. doi:10.1074/jbc

    Article  CAS  PubMed  Google Scholar 

  32. Masters BR (1984) Noninvasive redox fluorometry: how light can be used to monitor alterations of corneal mitochondrial function. Curr Eye Res 3(1):23–26

    Article  CAS  PubMed  Google Scholar 

  33. Mayevsky A, Kaplan H, Haveri J, Haselgrove J, Chance B (1986) Three-dimensional metabolic mapping of the freeze-trapped brain: effects of ischemia on the Mongolian gerbil. Brain Res 367:63–72

    Article  CAS  PubMed  Google Scholar 

  34. Barlow CH, Chance B, Haselgrove J, Sorge J (1982) Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am J Physiol 242:C265–C271

    PubMed  Google Scholar 

  35. Bashford CL, Barlow CH, Chance B, Haselgrove J, Sorge J (1982) Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am J Physiol 242(5):C265–C271

    CAS  PubMed  Google Scholar 

  36. Shiino A, Matsuda M, Handa J, Chance B (1998) Poor recovery of mitochondrial redox state in CA1 after transient forebrain ischemia in gerbils. Stroke 29(11):2421–2424

    Article  CAS  PubMed  Google Scholar 

  37. Shiino A, Haida M, Beauvoit B, Chance B (1999) Three-dimensional redox image of the normal gerbil brain. Neuroscience 91(4):1581–1585

    Article  CAS  PubMed  Google Scholar 

  38. Sato B, Tanaka A, Mori S, Yanabu N, Kitai T, Tokuka A, Inomoto T, Iwata S, Yamaoka Y, Chance B (1995) Quantitative analysis of redox gradient within the rat liver acini by fluorescence images: effects of glucagon perfusion. Biochim Biophys Acta 1268(1):20–26

    Article  PubMed  Google Scholar 

  39. Kitai T, Tanaka A, Tokuka A, Ozawa K, Iwata S, Chance B (1992) Changes in the redox distribution of rat liver by ischemia. Anal Biochem 206:131–136

    Article  CAS  PubMed  Google Scholar 

  40. Ozawa K, Chance B, Tanaka A, Iwata S, Kitai T, Ikai I (1992) Linear correlation between acetoacetate/β-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue. Biochim Biophys Acta 1138:350–352

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka A, Kitai T, Iwata S, Hirao K, Tokuka A, Sato B, Yanabu N, Mori S, Inomoto T, Yamaoka Y, Tanaka K, Ozawa K, Chance B (1993) Delayed oxidation of intramitochondrial pyridine nucleotide oxidoreduction state as compared with tissue oxygenation in human liver transplantation. Biochim Biophys Acta 1182:250–256

    Article  CAS  PubMed  Google Scholar 

  42. Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R (2003) Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J Physiol 549(pt 3):919–927. doi:10.1113/jphysiol.2003.040709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shibuki K, Ono K, Hishida R, Kudoh M (2006) Endogenous fluorescence imaging of somatosensory cortical activities after discrimination learning in rats. Neuroimage 30(3):735–744. doi:10.1016/j.neuroimage.2005.10.004

    Article  PubMed  Google Scholar 

  44. Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K (2006) Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci 23(5):1365–1376. doi:10.1111/j.1460-9568.2006.04662.x

    Article  PubMed  Google Scholar 

  45. Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K (2006) Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. J Neurosci 26(45):11775–11785. doi:10.1523/JNEUROSCI.1643-06.2006

    Article  CAS  PubMed  Google Scholar 

  46. Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109(suppl 1):3–9. doi:10.1111/j.1471-4159.2009.05926.x

    Article  CAS  PubMed  Google Scholar 

  47. Kitaura H, Hishida R, Shibuki K (2010) Transcranial imaging of somatotopic map plasticity after tail cut in mice. Brain Res 1319:54–59. doi:10.1016/j.brainres.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe K, Kamatani D, Hishida R, Shibuki K (2011) Timing-dependent effects of whisker trimming in thalamocortical slices including the mouse barrel cortex. Brain Res 1385:93–106. doi:10.1016/j.brainres.2011.02.026

    Article  CAS  PubMed  Google Scholar 

  49. Hishida R, Watanabe K, Kudoh M, Shibuki K (2011) Transcranial electrical stimulation of cortico-cortical connections in anesthetized mice. J Neurosci Methods 201(2):315–321. doi:10.1016/j.jneumeth.2011.08.007

    Article  PubMed  Google Scholar 

  50. Honma Y, Tsukano H, Horie M, Ohshima S, Tohmi M, Kubota Y, Takahashi K, Hishida R, Takahashi S, Shibuki K (2013) Auditory cortical areas activated by slow frequency-modulated sounds in mice. PLoS One 8(7), e68113. doi:10.1371/journal.pone.0068113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hishida R, Kudoh M, Shibuki K (2014) Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice. Neurosci Res 87:49–55. doi:10.1016/j.neures.2014.07.004

    Article  PubMed  Google Scholar 

  52. Tsukano H, Horie M, Bo T, Uchimura A, Hishida R, Kudoh M, Takahashi K, Takebayashi H, Shibuki K (2015) Delineation of a frequency-organized region isolated from the mouse primary auditory cortex. J Neurophysiol 00932.2014. doi: 10.1152/jn.00932.2014 [Epub ahead of print]

    Google Scholar 

  53. Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92(1):199–211. doi:10.1152/jn.01275.2003

    Article  CAS  PubMed  Google Scholar 

  54. Chen G, Gao W, Reinert KC, Popa LS, Hendrix CM, Ross ME, Ebner TJ (2005) Involvement of kv1 potassium channels in spreading acidification and depression in the cerebellar cortex. J Neurophysiol 94(2):1287–1298. doi:10.1152/jn.00224.2005

    Article  CAS  PubMed  Google Scholar 

  55. Gao W, Chen G, Reinert KC, Ebner TJ (2006) Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci 26(32):8377–8387. doi:10.1523/JNEUROSCI.2434-06.2006

    Article  CAS  PubMed  Google Scholar 

  56. Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85(15):3221–3232. doi:10.1002/jnr.21348

    Article  CAS  PubMed  Google Scholar 

  57. Reinert KC, Gao W, Chen G, Wang X, Peng YP, Ebner TJ (2011) Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum 10(3):585–599. doi:10.1007/s12311-011-0278-x

    Article  PubMed Central  PubMed  Google Scholar 

  58. Husson TR, Mallik AK, Zhang JX, Issa NP (2007) Functional imaging of primary visual cortex using flavoprotein autofluorescence. J Neurosci 27(32):8665–8675. doi:10.1523/JNEUROSCI.2156-07.2007

    Article  CAS  PubMed  Google Scholar 

  59. Mallik AK, Husson TR, Zhang JX, Rosenberg A, Issa NP (2008) The organization of spatial frequency maps measured by cortical flavoprotein autofluorescence. Vision Res 48(14):1545–1553. doi:10.1016/j.visres.2008.04.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Llano DA, Theyel BB, Mallik AK, Sherman SM, Issa NP (2009) Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol 101(6):3325–3340. doi:10.1152/jn.91291.200810.1152/jn.91291.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Theyel BB, Llano DA, Issa NP, Mallik AK, Sherman SM (2011) In vitro imaging using laser photostimulation with flavoprotein autofluorescence. Nat Protoc 6(4):502–508. doi:10.1038/nprot.2011.315

    Article  CAS  PubMed  Google Scholar 

  62. MasoudiMotlagh M, Sepehr R, Sheibani N, Sorenson CM, Ranji M (2015) Optical cryoimaging of mitochondrial redox state in bronchopulmonary-dysplasia injury models in mice lungs. Quant Imaging Med Surg 5(1):159–162. doi:10.3978/j.issn.2223-4292.2014.12.04

    PubMed Central  PubMed  Google Scholar 

  63. Sepehr R, Audi SH, Staniszewski KS, Haworth ST, Jacobs ER, Ranji M (2013) Novel flurometric tool to assess mitochondrial redox state of isolated perfused rat lungs after exposure to hyperoxia. IEEE J Transl Eng Health Med 1:1500210 doi:10.1109/JTEHM.2013.2285916

    Google Scholar 

  64. Sepehr R, Audi SH, Maleki S, Staniszewski K, Eis AL, Konduri GG, Ranji M (2014) Optical imaging of lipopolysaccharide-induced oxidative stress in acute lung injury from hyperoxia and sepsis. J Innov Opt Health Sci 6(3):1350017. doi:10.1142/S179354581350017X

    Article  Google Scholar 

  65. Ghanian Z, Maleki S, Reiland H, Butz DE, Chiellini G, Assadi-Porter FM, Ranji M (2013) Optical imaging of mitochondrial redox state in rodent models with 3-iodothyronamine. Exp Biol Med (Maywood) 239(2):151–158. doi:10.1177/1535370213510252

    Article  Google Scholar 

  66. Ghanian Z, Maleki S, Park S, Sorenson CM, Sheibani N, Ranji M (2013) Organ specific optical imaging of mitochondrial redox state in a rodent model of hereditary hemorrhagic telangiectasia-1. J Biophotonics 7(10):799–809. doi:10.1002/jbio.201300033

    Article  PubMed  Google Scholar 

  67. Maleki S, Gopalakrishnan S, Ghanian Z, Sepehr R, Schmitt H, Eells J, Ranji M (2013) Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa. J Biomed Opt 18(1):16004. doi:10.1117/1.JBO.18.1.016004

    Article  PubMed  Google Scholar 

  68. Staniszewski K, Audi SH, Sepehr R, Jacobs ER, Ranji M (2013) Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs. Ann Biomed Eng 41(4):827–836. doi:10.1007/s10439-012-0716-z

    Article  PubMed Central  PubMed  Google Scholar 

  69. Sepehr R, Staniszewski K, Maleki S, Jacobs ER, Audi S, Ranji M (2012) Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. J Biomed Opt 17(4):046010. doi:10.1117/1.JBO.17.4.046010

    Article  PubMed Central  PubMed  Google Scholar 

  70. Maleki S, Sepehr R, Staniszewski K, Sheibani N, Sorenson CM, Ranji M (2012) Mitochondrial redox studies of oxidative stress in kidneys from diabetic mice. Biomed Opt Exp 3(2):273–281. doi:10.1364/BOE.3.000273

    Article  CAS  Google Scholar 

  71. Matsubara M, Ranji M, Leshnower BG, Noma M, Ratcliffe SJ, Chance B, Gorman RC, Gorman JH 3rd (2010) In vivo fluorometric assessment of cyclosporine on mitochondrial function during myocardial ischemia and reperfusion. Ann Thorac Surg 89(5):1532–1537. doi:10.1016/j.athoracsur.2010.01.065

    Article  PubMed Central  PubMed  Google Scholar 

  72. Ranji M, Matsubara M, Leshnower BG, Hinmon RH, Jaggard DL, Chance B, Gorman RC, Gorman JH III (2009) Quantifying acute myocardial injury using ratiometric fluorometry. IEEE Trans Biomed Eng 56(5):1556–1563. doi:10.1109/TBME.2008.2006029

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ranji M, Kanemoto S, Matsubara M, Grosso MA, Gorman JH 3rd, Gorman RC, Jaggard DL, Chance B (2006) Fluorescence spectroscopy and imaging of myocardial apoptosis. J Biomed Opt 11(6):064036. doi:10.1117/1.2400701

    Article  PubMed  Google Scholar 

  74. Ranji M, Jaggard DL, Apreleva SV, Vinogradov SA, Chance B (2006) Simultaneous fluorometry and phosphorometry of Langendorff perfused rat heart: ex vivo animal studies. Opt Lett 31(20):2995–2997

    Article  PubMed  Google Scholar 

  75. Mayevsky A (1976) Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res 113:327–338

    Article  CAS  PubMed  Google Scholar 

  76. Aubert X, Chance B, Keynes RD (1964) Optical studies of biochemical events in the electric organ of Electrophorus. Proc R Soc Lond B 160:211–245

    Article  CAS  Google Scholar 

  77. Jobsis FF, O’Connor M, Vitale A, Vreman H (1971) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J Neurophysiol 3465:735–749

    Google Scholar 

  78. Harbig K, Chance B, Kovach AGB, Reivich M (1976) In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J Appl Physiol 41(4):480–488

    CAS  PubMed  Google Scholar 

  79. Mayevsky A, Chance B (1973) A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Adv Exp Med Biol 37A:239–244

    CAS  PubMed  Google Scholar 

  80. Mayevsky A, Chance B (1975) Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res 98:149–165

    Article  CAS  PubMed  Google Scholar 

  81. Chance B, Salkovitz IA, Kovach AGB (1972) Kinetics of mitochondrial flavoprotein and pyridine nucleotide in perfused heart. Am J Physiol 223(1):207–218

    CAS  PubMed  Google Scholar 

  82. Mayevsky A (1978) Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Res 140:217–230

    Article  CAS  PubMed  Google Scholar 

  83. Mayevsky A, Barbiro-Michaely E (2013) Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. J Clin Monit Comput 27:1–34. doi:10.1007/s10877-012-9414-5

    Article  PubMed  Google Scholar 

  84. Mayevsky A, Barbiro-Michaely E (2013) Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: II. Human studies. J Clin Monit Comput 27:125–145. doi:10.1007/s10877-012-9413-6

    Article  PubMed  Google Scholar 

  85. Mayevsky A, Ziv I (1991) Oscillations of cortical oxidative metabolism and microcirculation in the ischaemic brain. Neurol Res 13(1):39–47

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayevsky, A. (2015). Tissue Energy Metabolism and Mitochondrial Function. In: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-16682-7_2

Download citation

Publish with us

Policies and ethics