Skip to main content
  • 3077 Accesses

Abstract

First identified in 2006 in a colorectal cancer sequencing effort, Isocitrate Dehydrogenase (IDH) mutations were later reported in secondary glioblastomas by Parsons et al. leading the way for further studies which have revealed the presence of mutations in either IDH1 or IDH2 in over 70 % of grade II–III gliomas and secondary glioblastomas. In the clinic, IDH1 and IDH2 mutations are important prognostic factors associated with prolonged survival and enhanced radio- and chemo-sensitivity. At the benchside, IDH mutations are a major focus of glioma research. Significant progresses have been made elucidating the roles of IDH mutations in tumorigenesis. IDH mutations were shown to confer a neomorphic enzymatic activity: the reduction of α-Ketoglutarate (αKG) to 2-hydroxyglutarate (2HG). 2HG was further shown to be the main mediator of the oncogenic effects of IDH mutation leading to epigenetic alterations, extracellular matrix remodeling, and hypoxia-inducible factor 1α (HIF1a) degradation. However, many aspects remain unclear such as the potential influence of IDH mutations on cancer cell metabolism and whether IDH mutations, despite increasingly well-characterized oncogenic mechanisms, may also trigger pro-survival effects. Elucidating the roles of mutant IDH enzymes in tumorigenesis will significantly improve our understanding of glioma biology and will lead to novel therapeutic strategies that should aim to disrupt the oncogenic properties of IDH mutations while promoting properties that may contribute to the slower growth, enhanced sensitivity to conventional therapies and overall longer survival characteristic of IDH mutant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.

    Article  CAS  PubMed  Google Scholar 

  3. Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27:4150–4.

    Article  CAS  PubMed  Google Scholar 

  4. Houillier C, Wang X, Kaloshi G, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75:1560–6.

    Article  CAS  PubMed  Google Scholar 

  5. Bettegowda C, Agrawal N, Jiao Y, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333:1453–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yip S, Butterfield YS, Morozova O, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226:7–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cairncross G, Jenkins R. Gliomas with 1p/19q codeletion: a.k.a. oligodendroglioma. Cancer J. 2008;14:352–7.

    Article  PubMed  Google Scholar 

  8. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013;19:764–72.

    Article  CAS  PubMed  Google Scholar 

  12. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:2348–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28:3636–43.

    Article  CAS  PubMed  Google Scholar 

  15. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Abbas S, Lugthart S, Kavelaars F, et al. Acquired mutations in the genes encoding Idh1 and Idh2 both are recurrent aberrations in acute myeloid leukemia (Aml): prevalence and prognostic value. Haematol Hematol J. 2010;95:455.

    Google Scholar 

  17. Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.

    Article  CAS  PubMed  Google Scholar 

  18. Amary MF, Damato S, Halai D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 2011;43:1262–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kosmider O, Gelsi-Boyer V, Slama L, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 2010;24:1094–6.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wei H, Tang K, et al. Mutation analysis of isocitrate dehydrogenase in acute lymphoblastic leukemia. Genet Test Mol Biomarkers. 2012;16:991–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119:1901–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43:1552–8.

    Article  CAS  PubMed  Google Scholar 

  23. Gaal J, Burnichon N, Korpershoek E, et al. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J Clin Endocrinol Metab. 2010;95:1274–8.

    Article  CAS  PubMed  Google Scholar 

  24. Schaap FG, French PJ, Bovee JV. Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 in tumors. Adv Anat Pathol. 2013;20:32–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kato Kaneko M, Liu X, Oki H, et al. Isocitrate dehydrogenase mutation is frequently observed in giant cell tumor of bone. Cancer Sci. 2014;105:744–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  28. Warburg O. The metabolism of tumours: investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. London: Constable & Co. Ltd.; 1930.

    Google Scholar 

  29. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.

    CAS  PubMed  Google Scholar 

  30. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    Article  CAS  PubMed  Google Scholar 

  31. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25:4675–82.

    Article  CAS  PubMed  Google Scholar 

  32. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30:406–10.

    Article  CAS  PubMed  Google Scholar 

  33. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ward PS, Cross JR, Lu C, et al. Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene. 2012;31:2491–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pichler MM, Bodner C, Fischer C, et al. Evaluation of mutations in the isocitrate dehydrogenase genes in therapy-related and secondary acute myeloid leukaemia identifies a patient with clonal evolution to IDH2 R172K homozygosity due to uniparental disomy. Br J Haematol. 2011;152:669–72.

    Article  CAS  PubMed  Google Scholar 

  36. Ward PS, Lu C, Cross JR, et al. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem. 2013;288:3804–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jin G, Reitman ZJ, Duncan CG, et al. Disruption of wild type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Res. 2013;73:496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10:179–206.

    Article  CAS  PubMed  Google Scholar 

  39. Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1(R132) mutation is associated with reduced NADP + -dependent IDH activity in glioblastoma. Acta Neuropathol. 2010;119:487–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gilbert MR, Liu Y, Neltner J, et al. Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol. 2014;127:221–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Latini A, Scussiato K, Rosa RB, et al. D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci. 2003;17:2017–22.

    Article  PubMed  Google Scholar 

  42. Loenarz C, Schofield CJ. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol. 2008;4:152–6.

    Article  CAS  PubMed  Google Scholar 

  43. Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70:8981–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chaumeil MM, Larson PE, Yoshihara HA, et al. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun. 2013;4:2429.

    PubMed Central  PubMed  Google Scholar 

  45. Andronesi OC, Kim GS, Gerstner E, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4:116ra114.

    Article  Google Scholar 

  46. Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107:197–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Struys EA. D-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis. 2006;29:21–9.

    Article  CAS  PubMed  Google Scholar 

  48. Moroni I, Bugiani M, D’Incerti L, et al. L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition? Neurology. 2004;62:1882–4.

    Article  CAS  PubMed  Google Scholar 

  49. Latini A, da Silva CG, Ferreira GC, et al. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab. 2005;86:188–99.

    Article  CAS  PubMed  Google Scholar 

  50. Kolker S, Pawlak V, Ahlemeyer B, et al. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur J Neurosci. 2002;16:21–8.

    Article  PubMed  Google Scholar 

  51. Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Frezza C, Pollard PJ, Gottlieb E. Inborn and acquired metabolic defects in cancer. J Mol Med (Berl). 2011;89:213–20.

    Article  CAS  Google Scholar 

  53. Kaelin WG. SDH5 mutations and familial paraganglioma: somewhere warburg is smiling. Cancer Cell. 2009;16:180–2.

    Article  CAS  PubMed  Google Scholar 

  54. Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Chowdhury R, Yeoh KK, Tian YM, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chesnelong C, Chaumeil MM, Blough MD, et al. Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro Oncol. 2014;16:686–95.

    Article  CAS  PubMed  Google Scholar 

  61. Kaelin Jr WG. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol. 2011;76:335–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Koivunen P, Lee S, Duncan CG, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Losman JA, Kaelin Jr WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.

    Article  CAS  PubMed  Google Scholar 

  65. Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A. 2012;109:E3367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Navis AC, Niclou SP, Fack F, et al. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and alpha-KG. Acta Neuropathologica Commun. 2013;1:18.

    Article  Google Scholar 

  67. Grassian AR, Parker SJ, Davidson SM, et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 2014;74:3317.

    Article  CAS  PubMed  Google Scholar 

  68. Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7:391–402.

    Article  CAS  PubMed  Google Scholar 

  69. Forristal CE, Winkler IG, Nowlan B, Barbier V, Walkinshaw G, Levesque JP. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood. 2013;121:759–69.

    Article  CAS  PubMed  Google Scholar 

  70. Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I Krogh’s model. Biophysical journal. 2001;81:675–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Jensen PO, Mortensen BT, Hodgkiss RJ, et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif. 2000;33:381–95.

    Article  CAS  PubMed  Google Scholar 

  72. Liu W, Guo M, Xu YB, et al. Induction of tumor arrest and differentiation with prolonged survival by intermittent hypoxia in a mouse model of acute myeloid leukemia. Blood. 2006;107:698–707.

    Article  CAS  PubMed  Google Scholar 

  73. Song LP, Zhang J, Wu SF, et al. Hypoxia-inducible factor-1alpha-induced differentiation of myeloid leukemic cells is its transcriptional activity independent. Oncogene. 2008;27:519–27.

    Article  CAS  PubMed  Google Scholar 

  74. Piaskowski S, Bienkowski M, Stoczynska-Fidelus E, et al. Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br J Cancer. 2011;104:968–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Luchman HA, Stechishin OD, Dang NH, et al. An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol. 2012;14:184–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Luchman HA, Chesnelong C, Cairncross JG, Weiss S. Spontaneous loss of heterozygosity leading to homozygous R132H in a patient-derived IDH1 mutant cell line. Neuro Oncol. 2013;15:979.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Okita Y, Narita Y, Miyakita Y, et al. IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int J Oncol. 2012;41:1325–36.

    CAS  PubMed  Google Scholar 

  78. SongTao Q, Lei Y, Si G, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269–73.

    Article  PubMed  Google Scholar 

  79. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  80. Li S, Chou AP, Chen W, et al. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neuro Oncol. 2013;15:57–68.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Wang JB, Dong DF, Wang MD, Gao K. IDH1 overexpression induced chemotherapy resistance and IDH1 mutation enhanced chemotherapy sensitivity in Glioma cells in vitro and in vivo. Asian Pac J Cancer Prev. 2014;15:427–32.

    Article  PubMed  Google Scholar 

  82. Baldewpersad Tewarie NM, Burgers IA, Dawood Y, et al. NADP+ -dependent IDH1 R132 mutation and its relevance for glioma patient survival. Med Hypotheses. 2013;80:728–31.

    Article  CAS  PubMed  Google Scholar 

  83. Zheng B, Yao Y, Liu Z, et al. Crystallographic investigation and selective inhibition of mutant isocitrate dehydrogenase. ACS Med Chem Lett. 2013;4:542–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Davis M, Pragani R, Popovici-Muller J, et al. ML309: a potent inhibitor of R132H mutant IDH1 capable of reducing 2-hydroxyglutarate production in U87 MG glioblastoma cells. Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD: NIH; 2010.

    Google Scholar 

  85. Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6.

    Article  CAS  PubMed  Google Scholar 

  86. Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Turcan S, Fabius AW, Borodovsky A, et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget. 2013;4:1729–36.

    PubMed Central  PubMed  Google Scholar 

  88. Borodovsky A, Salmasi V, Turcan S, et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget. 2013;4:1737–47.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Chesnelong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chesnelong, C. (2015). Isocitrate Dehydrogenase (IDH) Mutation in Gliomas. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_25

Download citation

Publish with us

Policies and ethics