Skip to main content

Principles of Redox Signaling

  • Chapter
Studies on Hepatic Disorders

Abstract

Reactive oxygen/nitrogen species are presently recognized not only as damaging by-products of aerobic respiration or inflammatory reactions, but also critical mediators of redox signalling in different organs, including liver. The molecules of oxidants produced within cells, as well as the chemical principles sustaining cellular redox-regulated processes are herein described. Cysteine residues of some proteins act as sensors of redox milieu and are oxidized in reversible reactions leading to the formation of sulfenic acid and disulfides, the initial steps of thiol oxidation. Central to reversibility of redox-signaling processes are glutathione, thioredoxins, and peroxiredoxins systems, controlling intracellular local hydrogen peroxide levels and thiol/disulfide balance. The role of hydrogen peroxide channels as aquaporins/peroxiporins is described. Lastly, some of the most important redox-based molecular machines are described in detail, including tyrosine phosphatases, receptor or cytosolic kinases, metabolic enzymes, and several transcriptions factors. Moreover, some redox-sensitive non-protein substrates, endowed with signalling features, are described. The redox signalling area of research is promptly expanding and continuous challenging studies are examining new pathways and clarifying their importance in cellular hepatic pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhand AA, Pu M, Senga T, Kato M, Suzuki H, Miyata T, Hamaguchi M, Nakashima I (1999) Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274:25821–25826

    CAS  PubMed  Google Scholar 

  2. Amente S, Bertoni A, Morano A, Lania L, Avvedimento EV, Majello B (2010) LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene 29:3691–3702

    CAS  PubMed  Google Scholar 

  3. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Ascenzi P, di MA, Sciorati C, Clementi E (2010) Peroxynitrite—an ugly biofactor? Biofactors 36:264–273

    CAS  PubMed  Google Scholar 

  5. Aubert J, Begriche K, Knockaert L, Robin MA, Fromenty B (2011) Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin Res Hepatol Gastroenterol 35:630–637

    CAS  PubMed  Google Scholar 

  6. Babior BM (2002) The leukocyte NADPH oxidase. Isr Med Assoc J 4:1023–1024

    CAS  PubMed  Google Scholar 

  7. Bae SH, Sung SH, Cho EJ, Lee SK, Lee HE, Woo HA, Yu DY, Kil IS, Rhee SG (2011) Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53:945–953

    CAS  PubMed  Google Scholar 

  8. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    CAS  PubMed  Google Scholar 

  9. Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22:111–180

    CAS  PubMed  Google Scholar 

  10. Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363:731–733

    CAS  PubMed  Google Scholar 

  11. Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–H1236

    CAS  PubMed  Google Scholar 

  12. Bertini R, Howard OM, Dong HF, Oppenheim JJ, Bizzarri C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire JA, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg LA, Herzenberg LA, Ghezzi P (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189:1783–1789

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    CAS  PubMed  Google Scholar 

  14. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    CAS  PubMed  Google Scholar 

  15. Bloom D, Dhakshinamoorthy S, Jaiswal AK (2002) Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 21:2191–2200

    CAS  PubMed  Google Scholar 

  16. Boivin B, Yang M, Tonks NK (2010) Targeting the reversibly oxidized protein tyrosine phosphatase superfamily. Sci Signal 3:l2

    Google Scholar 

  17. Brandes RP, Takac I, Schroder K (2011) No superoxide–no stress?: Nox4, the good NADPH oxidase! Arterioscler Thromb Vasc Biol 31:1255–1257

    CAS  PubMed  Google Scholar 

  18. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  19. Buricchi F, Giannoni E, Grimaldi G, Parri M, Raugei G, Ramponi G, Chiarugi P (2007) Redox regulation of ephrin/integrin cross-talk. Cell Adh Migr 1:33–42

    PubMed Central  PubMed  Google Scholar 

  20. Butterfield DA, Hardas SS, Lange ML (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J Alzheimers Dis 20:369–393

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol 1:353–358

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R, Manevich Y, Beeson C, Neumann CA (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 28:1505–1517

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125:2115–2125

    CAS  PubMed  Google Scholar 

  24. Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, Ghezzi P (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99:9745–9749

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Chandel NS (2010) Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol 661:339–354

    CAS  PubMed  Google Scholar 

  26. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001

    CAS  PubMed  Google Scholar 

  27. Chen F, Haigh S, Barman S, Fulton DJ (2012) From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 3:412

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Chiarugi P (2008) From anchorage dependent proliferation to survival: lessons from redox signalling. IUBMB Life 60:301–307

    CAS  PubMed  Google Scholar 

  30. Chiarugi P (2009) Survival or death: the redox paradox. Antioxid Redox Signal 11:2651–2654

    CAS  PubMed  Google Scholar 

  31. Chiarugi P, Buricchi F (2007) Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid Redox Signal 9:1–24

    CAS  PubMed  Google Scholar 

  32. Chiarugi P, Cirri P, Taddei L, Giannoni E, Camici G, Manao G, Raugei G, Ramponi G (2000) The low M(r) protein-tyrosine phosphatase is involved in Rho-mediated cytoskeleton rearrangement after integrin and platelet-derived growth factor stimulation. J Biol Chem 275:4640–4646

    CAS  PubMed  Google Scholar 

  33. Chiarugi P, Fiaschi T, Taddei ML, Talini D, Giannoni E, Raugei G, Ramponi G (2001) Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276:33478–33487

    CAS  PubMed  Google Scholar 

  34. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353

    CAS  PubMed  Google Scholar 

  36. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    CAS  PubMed  Google Scholar 

  37. Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, MacMillan-Crow LA (2001) Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys 394:167–172

    CAS  PubMed  Google Scholar 

  38. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    CAS  PubMed  Google Scholar 

  39. Corcoran A, Cotter TG (2013) Redox regulation of protein kinases. FEBS J 280:1944–1965

    CAS  PubMed  Google Scholar 

  40. Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Dansen TB, Smits LM, van Triest MH, de Keizer PL, Van LD, Koerkamp MG, Szypowska A, Meppelink A, Brenkman AB, Yodoi J, Holstege FC, Burgering BM (2009) Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 5:664–672

    CAS  PubMed  Google Scholar 

  42. de Keizer PL, Burgering BM, Dansen TB (2011) Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal 14:1093–1106

    PubMed  Google Scholar 

  43. Decker EA, Livisay SA, Zhou S (2000) A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc) 65:766–770

    CAS  Google Scholar 

  44. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Drahota Z, Chowdhury SK, Floryk D, Mracek T, Wilhelm J, Rauchova H, Lenaz G, Houstek J (2002) Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr 34:105–113

    CAS  PubMed  Google Scholar 

  46. Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, Budinger GR, Chandel NS (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med 46:1386–1391

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    CAS  PubMed  Google Scholar 

  48. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    CAS  PubMed  Google Scholar 

  50. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  PubMed  Google Scholar 

  51. Farah ME, Amberg DC (2007) Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell 18:1359–1365

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Fiaschi T, Cozzi G, Chiarugi P (2012) Redox regulation of nonmuscle myosin heavy chain during integrin engagement. J Signal Transduct 2012:754964

    PubMed Central  PubMed  Google Scholar 

  53. Fiaschi T, Cozzi G, Raugei G, Formigli L, Ramponi G, Chiarugi P (2006) Redox regulation of beta-actin during integrin-mediated cell adhesion. J Biol Chem 281:22983–22991

    CAS  PubMed  Google Scholar 

  54. Filomeni G, Desideri E, Cardaci S, Graziani I, Piccirillo S, Rotilio G, Ciriolo MR (2010) Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy 6:202–216

    CAS  PubMed  Google Scholar 

  55. Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD (2006) A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 66:6800–6806

    CAS  PubMed  Google Scholar 

  56. Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    CAS  PubMed  Google Scholar 

  57. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99:3505–3510

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230–238

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794

    CAS  PubMed  Google Scholar 

  61. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70:6945–6956

    CAS  PubMed  Google Scholar 

  62. Giannoni E, Buricchi F, Grimaldi G, Parri M, Cialdai F, Taddei ML, Raugei G, Ramponi G, Chiarugi P (2008) Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival. Cell Death Differ 15:867–878

    CAS  PubMed  Google Scholar 

  63. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25:6391–6403

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Giannoni E, Fiaschi T, Ramponi G, Chiarugi P (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28:2074–2086

    CAS  PubMed  Google Scholar 

  65. Giannoni E, Taddei ML, Chiarugi P (2010) Src redox regulation: again in the front line. Free Radic Biol Med 49:516–527

    CAS  PubMed  Google Scholar 

  66. Girotti AW, Korytowski W (2000) Cholesterol as a singlet oxygen detector in biological systems. Methods Enzymol 319:85–100

    CAS  PubMed  Google Scholar 

  67. Giustarini D, Milzani A, Aldini G, Carini M, Rossi R, Dalle-Donne I (2005) S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione. Antioxid Redox Signal 7:930–939

    CAS  PubMed  Google Scholar 

  68. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 11:2209–2222

    CAS  PubMed  Google Scholar 

  69. Gong P, Cederbaum AI (2006) Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. Hepatology 43:144–153

    CAS  PubMed  Google Scholar 

  70. Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283:21837–21841

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Gross S, Knebel A, Tenev T, Neininger A, Gaestel M, Herrlich P, Bohmer FD (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274:26378–26386

    CAS  PubMed  Google Scholar 

  73. Gruning NM, Lehrach H, Ralser M (2010) Regulatory crosstalk of the metabolic network. Trends Biochem Sci 35:220–227

    PubMed  Google Scholar 

  74. Gruning NM, Ralser M (2011) Cancer: sacrifice for survival. Nature 480:190–191

    PubMed  Google Scholar 

  75. Gruning NM, Rinnerthaler M, Bluemlein K, Mulleder M, Wamelink MM, Lehrach H, Jakobs C, Breitenbach M, Ralser M (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14:415–427

    PubMed Central  PubMed  Google Scholar 

  76. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    CAS  PubMed  Google Scholar 

  77. Gueraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    CAS  PubMed  Google Scholar 

  78. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    CAS  PubMed  Google Scholar 

  79. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    CAS  PubMed  Google Scholar 

  80. Haddad JJ, Land SC (2001) A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett 505:269–274

    CAS  PubMed  Google Scholar 

  81. Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749

    CAS  PubMed  Google Scholar 

  82. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    CAS  PubMed  Google Scholar 

  83. Halliwell B, Gutteridge JM (1995) The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 18:125–126

    CAS  PubMed  Google Scholar 

  84. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Hardie DG (2007) Biochemistry. Balancing cellular energy. Science 315:1671–1672

    CAS  PubMed  Google Scholar 

  86. Harhaji-Trajkovic L, Vilimanovich U, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V (2009) AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells. J Cell Mol Med 13:3644–3654

    CAS  PubMed  Google Scholar 

  87. Harris CM, Massey V (1997) The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism. J Biol Chem 272:28335–28341

    CAS  PubMed  Google Scholar 

  88. Hashemy SI, Johansson C, Berndt C, Lillig CH, Holmgren A (2007) Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity. J Biol Chem 282:14428–14436

    CAS  PubMed  Google Scholar 

  89. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    CAS  PubMed  Google Scholar 

  90. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    CAS  PubMed  Google Scholar 

  91. Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (2008) Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem Biophys Res Commun 367:103–108

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  PubMed  Google Scholar 

  93. Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20:739–748

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Hurley PJ, Bunz F (2007) ATM and ATR: components of an integrated circuit. Cell Cycle 6:414–417

    CAS  PubMed  Google Scholar 

  95. Hussain T, Gupta S, Mukhtar H (2003) Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett 191:125–135

    CAS  PubMed  Google Scholar 

  96. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Jenkins JL, Tanner JJ (2006) High-resolution structure of human d-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 62:290–301

    PubMed  Google Scholar 

  99. Jeong W, Park SJ, Chang TS, Lee DY, Rhee SG (2006) Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J Biol Chem 281:14400–14407

    CAS  PubMed  Google Scholar 

  100. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403

    CAS  PubMed  Google Scholar 

  102. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    CAS  PubMed  Google Scholar 

  103. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Kato M, Iwashita T, Takeda K, Akhand AA, Liu W, Yoshihara M, Asai N, Suzuki H, Takahashi M, Nakashima I (2000) Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases. Mol Biol Cell 11:93–101

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Keilin D, Hartree EF (1945) Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem J 39:293–301

    PubMed Central  CAS  Google Scholar 

  106. Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31:90–99

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Kim DH, Kundu JK, Surh YJ (2011) Redox modulation of p53: mechanisms and functional significance. Mol Carcinog 50:222–234

    CAS  PubMed  Google Scholar 

  108. Kim I, Han SJ, Kim Y, Ahn Y, Chay KO, Lee SR (2011) Tyr740 and Tyr751 residues of platelet-derived growth factor beta receptor are responsible for the redox regulation of phosphatase and tensin homolog in the cells stimulated with platelet-derived growth factor. Redox Rep 16:181–186

    CAS  PubMed  Google Scholar 

  109. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Kruger A, Gruning NM, Wamelink MM, Kerick M, Kirpy A, Parkhomchuk D, Bluemlein K, Schweiger MR, Soldatov A, Lehrach H, Jakobs C, Ralser M (2011) The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxid Redox Signal 15:311–324

    PubMed  Google Scholar 

  111. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state. Biochem J 368:545–553

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Lamle J, Marhenke S, Borlak J, von WR, Eriksson CJ, Geffers R, Borlak J, Manns MP, Yamamoto M, Vogel A (2008) Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134:1159–1168

    CAS  PubMed  Google Scholar 

  113. Lee BC, Gladyshev VN (2011) The biological significance of methionine sulfoxide stereochemistry. Free Radic Biol Med 50:221–227

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Lee JW, Kim JE, Park EJ, Kim JH, Lee CH, Lee SR, Kwon J (2004) Two conserved cysteine residues are critical for the enzymic function of the human platelet-derived growth factor receptor-beta: evidence for different roles of Cys-822 and Cys-940 in the kinase activity. Biochem J 382:631–639

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Lee YJ, Cho HN, Soh JW, Jhon GJ, Cho CK, Chung HY, Bae S, Lee SJ, Lee YS (2003) Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Exp Cell Res 291:251–266

    CAS  PubMed  Google Scholar 

  116. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    CAS  PubMed  Google Scholar 

  117. Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP (2008) Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 27:5464–5476

    CAS  PubMed  Google Scholar 

  118. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22:5501–5510

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Leu TH, Su SL, Chuang YC, Maa MC (2003) Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem Pharmacol 66:2323–2331

    CAS  PubMed  Google Scholar 

  121. Leung TM, Nieto N (2013) CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 58:395–398

    CAS  PubMed  Google Scholar 

  122. Lieber CS (1997) Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 77:517–544

    CAS  PubMed  Google Scholar 

  123. Lien EJ, Ren S, Bui HH, Wang R (1999) Quantitative structure–activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26:285–294

    CAS  PubMed  Google Scholar 

  124. Lin T, Ponn A, Hu X, Law BK, Lu J (2010) Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29:4896–4904

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44:1529–1535

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974

    CAS  PubMed  Google Scholar 

  127. Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC (2007) Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res 67:7368–7377

    CAS  PubMed  Google Scholar 

  128. Loughran PA, Stolz DB, Vodovotz Y, Watkins SC, Simmons RL, Billiar TR (2005) Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci U S A 102:13837–13842

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42:719–730

    CAS  PubMed  Google Scholar 

  130. Maillet A, Pervaiz S (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 16:1285–1294

    CAS  PubMed  Google Scholar 

  131. Mannervik B (1987) The enzymes of glutathione metabolism: an overview. Biochem Soc Trans 15:717–718

    CAS  PubMed  Google Scholar 

  132. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    CAS  PubMed  Google Scholar 

  133. Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci 116:3041–3049

    CAS  PubMed  Google Scholar 

  134. Matthews JR, Kaszubska W, Turcatti G, Wells TN, Hay RT (1993) Role of cysteine62 in DNA recognition by the P50 subunit of NF-kappa B. Nucleic Acids Res 21:1727–1734

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Maurel A, Hernandez C, Kunduzova O, Bompart G, Cambon C, Parini A, Frances B (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 284:H1460–H1467

    CAS  PubMed  Google Scholar 

  136. McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension: the role of superoxide anion. Hypertension 34:539–545

    CAS  PubMed  Google Scholar 

  137. Melvin A, Rocha S (2012) Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 24:35–43

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Minetti M, Mallozzi C, Di Stasi AM (2002) Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med 33:744–754

    CAS  PubMed  Google Scholar 

  139. Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200

    PubMed Central  PubMed  Google Scholar 

  140. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri EE, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M, Godovac-Zimmermann J, Conti A, Schaefer E, Beguinot L, Tacchetti C, Gaggini P, Silengo L, Tarone G, Defilippi P (2002) Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277:9405–9414

    CAS  PubMed  Google Scholar 

  141. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Myatt SS, Brosens JJ, Lam EW (2011) Sense and sensitivity: FOXO and ROS in cancer development and treatment. Antioxid Redox Signal 14:675–687

    CAS  PubMed  Google Scholar 

  143. Nadeau PJ, Charette SJ, Toledano MB, Landry J (2007) Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol Biol Cell 18:3903–3913

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Ndhlala AR, Moyo M, Van SJ (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    CAS  PubMed  Google Scholar 

  145. Nikitovic D, Holmgren A (1996) S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    CAS  PubMed  Google Scholar 

  146. Nishino T, Okamoto K (2000) The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase. J Inorg Biochem 82:43–49

    CAS  PubMed  Google Scholar 

  147. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415

    CAS  PubMed  Google Scholar 

  148. Okuda M, Inoue N, Azumi H, Seno T, Sumi Y, Hirata K, Kawashima S, Hayashi Y, Itoh H, Yodoi J, Yokoyama M (2001) Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21:1483–1487

    CAS  PubMed  Google Scholar 

  149. Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 71:247–258

    CAS  PubMed  Google Scholar 

  150. Parri M, Chiarugi P (2013) Redox molecular machines involved in tumor progression. Antioxid Redox Signal 19:1828–1845

    CAS  PubMed  Google Scholar 

  151. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21:3247–3257

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Pekkari K, Goodarzi MT, Scheynius A, Holmgren A, Avila-Carino J (2005) Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood 105:1598–1605

    CAS  PubMed  Google Scholar 

  153. Pekkari K, Holmgren A (2004) Truncated thioredoxin: physiological functions and mechanism. Antioxid Redox Signal 6:53–61

    CAS  PubMed  Google Scholar 

  154. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, Chiariotti L, Malorni A, Abbondanza C, Avvedimento EV (2008) DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319:202–206

    CAS  PubMed  Google Scholar 

  155. Petrelli A, Perra A, Cora D, Sulas P, Menegon S, Manca C, Migliore C, Kowalik MA, Ledda-Columbano GM, Giordano S, Columbano A (2014) MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC). Hepatology 59:228–241

    CAS  PubMed  Google Scholar 

  156. Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jonsson TJ, Poole LB, Heintz NH (2006) Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J Cell Biol 175:779–789

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–14142

    CAS  PubMed  Google Scholar 

  158. Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944–952

    CAS  PubMed  Google Scholar 

  159. Polimeni M, Voena C, Kopecka J, Riganti C, Pescarmona G, Bosia A, Ghigo D (2011) Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J 439:141–149

    CAS  PubMed  Google Scholar 

  160. Pompella A, Visvikis A, Paolicchi A, De Tata T, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    CAS  PubMed  Google Scholar 

  161. Pyne NJ, Pyne S (2011) Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 32:443–450

    CAS  PubMed  Google Scholar 

  162. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    PubMed Central  PubMed  Google Scholar 

  163. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Reynaert NL, Wouters EF, Janssen-Heininger YM (2007) Modulation of glutaredoxin-1 expression in a mouse model of allergic airway disease. Am J Respir Cell Mol Biol 36:147–151

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5:447–453

    CAS  PubMed  Google Scholar 

  166. Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000:e1

    Google Scholar 

  167. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    CAS  PubMed  Google Scholar 

  168. Rhee SG, Woo HA, Kil IS, Bae SH (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287:4403–4410

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53(3):421–436

    CAS  PubMed  Google Scholar 

  170. Sanchez R, Riddle M, Woo J, Momand J (2008) Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci 17:473–481

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Sandin A, Dagnell M, Gonon A, Pernow J, Stangl V, Aspenstrom P, Kappert K, Ostman A (2011) Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal 23:820–826

    CAS  PubMed  Google Scholar 

  172. Schmid E, Hotz-Wagenblatt A, Hacj V, Droge W (1999) Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming. FASEB J 13:1491–1500

    CAS  PubMed  Google Scholar 

  173. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922–L931

    CAS  PubMed  Google Scholar 

  174. Semenza GL (2011) Hypoxia. Cross talk between oxygen sensing and the cell cycle machinery. Am J Physiol Cell Physiol 301:C550–C552

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7:348–366

    CAS  PubMed  Google Scholar 

  177. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    CAS  PubMed  Google Scholar 

  178. Shim GS, Manandhar S, Shin DH, Kim TH, Kwak MK (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic Biol Med 47:1619–1631

    CAS  PubMed  Google Scholar 

  179. Sid B, Verrax J, Calderon PB (2013) Role of AMPK activation in oxidative cell damage: implications for alcohol-induced liver disease. Biochem Pharmacol 86:200–209

    CAS  PubMed  Google Scholar 

  180. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA, Barata JT (2008) PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 118:3762–3774

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  PubMed  Google Scholar 

  182. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A 93:14428–14433

    PubMed Central  CAS  PubMed  Google Scholar 

  184. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    CAS  PubMed  Google Scholar 

  185. Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A 87:9943–9947

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    CAS  PubMed  Google Scholar 

  187. Stief TW (2003) The physiology and pharmacology of singlet oxygen. Med Hypotheses 60:567–572

    CAS  PubMed  Google Scholar 

  188. Taddei ML, Parri M, Mello T, Catalano A, Levine AD, Raugei G, Ramponi G, Chiarugi P (2007) Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 9:469–481

    CAS  PubMed  Google Scholar 

  189. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140

    CAS  PubMed  Google Scholar 

  190. Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72:1438–1448

    CAS  PubMed  Google Scholar 

  191. Tappel ME, Chaudiere J, Tappel AL (1982) Glutathione peroxidase activities of animal tissues. Comp Biochem Physiol B 73:945–949

    CAS  PubMed  Google Scholar 

  192. Ten FH, Dagnell M, Leuchs M, Vantler M, Berghausen EM, Caglayan E, Weissmann N, Dahal BK, Schermuly RT, Ostman A, Kappert K, Rosenkranz S (2011) Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med 183:1092–1102

    Google Scholar 

  193. Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174:615–623

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  195. Tobiume K, Saitoh M, Ichijo H (2002) Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191:95–104

    CAS  PubMed  Google Scholar 

  196. Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34:5–14

    CAS  PubMed  Google Scholar 

  197. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    CAS  PubMed  Google Scholar 

  198. Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 2006:re8

    PubMed  Google Scholar 

  199. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879

    PubMed  Google Scholar 

  200. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    CAS  PubMed  Google Scholar 

  202. Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46:7765–7780

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Vieceli Dalla SF, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C (2014) Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim Biophys Acta 1843:806–814

    Google Scholar 

  204. Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18

    CAS  PubMed  Google Scholar 

  206. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101:2040–2045

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279:10331–10337

    CAS  PubMed  Google Scholar 

  208. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7:ra1

    PubMed Central  PubMed  Google Scholar 

  211. Wei Q, Jiang H, Matthews CP, Colburn NH (2008) Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci U S A 105:19738–19743

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Wong CM, Marcocci L, Liu L, Suzuki YJ (2010) Cell signaling by protein carbonylation and decarbonylation. Antioxid Redox Signal 12:393–404

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140:517–528

    CAS  PubMed  Google Scholar 

  214. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Xanthoudakis S, Curran T (1992) Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 11:653–665

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    CAS  PubMed  Google Scholar 

  217. Yasinska IM, Sumbayev VV (2003) S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett 549:105–109

    CAS  PubMed  Google Scholar 

  218. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A (2012) Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 199:225–234

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–112

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285:33154–33164

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Chiarugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiarugi, P., Taddei, M.L., Giannoni, E. (2015). Principles of Redox Signaling. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_1

Download citation

Publish with us

Policies and ethics