Skip to main content

Simple Emergency Cardiac Sonography: A New Application Integrating Lung Ultrasound

  • Chapter
Lung Ultrasound in the Critically Ill
  • 4047 Accesses

Abstract

We use the best of our 1992 Edition, Chap. 20 (the heart), born from the privilege of having been working in echocardiography in a pioneering institution [1], a typical spirit of intensive care, a discipline aiming at reaching its autonomy.

The heart, this organ that prevents us to examine the lung…. Ph. Biderman (December 26, 2007)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricle performance. N Engl J Med 304(7):387–392

    Article  CAS  PubMed  Google Scholar 

  2. Braunwald E (1992) Heart disease. Saunders, Philadelphia

    Google Scholar 

  3. Benjamin E, Oropello JM, Stein JS (1996) Transesophageal echocardiography in the management of the critically ill patient. Curr Surg 53:137–141

    Google Scholar 

  4. Vignon P, Goarin JP (2002) Echocardiographie-Doppler en réanimation, anesthésie et médecine d’urgence. Elsevier, Amsterdam

    Google Scholar 

  5. Diebold B (1990) Intérêt de l’échocardiographie Doppler en réanimation. Réan Soins Int Med Urg 6:501–507

    Google Scholar 

  6. Vieillard-Baron A, Charron C, Jardin F (2006) Lung “recruitment” or lung overinflation maneuvers? Intensive Care Med 32:177–178

    Article  PubMed  Google Scholar 

  7. Price S, Nicol E, Gibson DG, Evans TW (2006) Echocardiography in the critically ill: current and potential roles. Intensive Care Med 32:48–59

    Article  CAS  PubMed  Google Scholar 

  8. Vieillard-Baron A, Slama M, Cholley B, Janvier G, Vignon P (2008) Echocardiography in the intensive care unit : from evolution to revolution ? Intensive Care Med 34(2):243–249, Epub 2007 Nov 9. Review

    Article  PubMed  Google Scholar 

  9. Vieillard-Baron A (2009) Assessment of right ventricular function. Curr Opin Crit Care 15(3):254–260. doi:10.1097/MCC.0b013e32832b70c9, Review

    Article  PubMed  Google Scholar 

  10. Jardin F, Vieillard-Baron A (2009) Acute cor pulmonale. Curr Opin Crit Care 15(1):67–70, Review

    Article  PubMed  Google Scholar 

  11. Vieillard-Baron A (2009) Is right ventricular function the one that matters in ARDS patients ? Definitely yes. Intensive Care Med 35(1):4–6

    Article  PubMed  Google Scholar 

  12. Breitkreutz R, Walcher F, Seeger FH (2007) Focused echocardiographic evaluation in resuscitation management: concept of an advanced life support-conformed algorithm. Crit Care Med 35:S150–S161

    Article  PubMed  Google Scholar 

  13. Sloth E (2006) Echocardiography in the ICU. Intensive Care Med 32:1283

    Article  PubMed  Google Scholar 

  14. Via G, Hussain A, Wells M, Reardon R, ElBarbary M, Noble V, Tsung JW, Neskovic AN, Price S et al (2014) International evidence-based recommendations for focused cardiac ultrasound. J Am Soc Echocardiogr 27(7):683.e1–683.e33. doi:10.1016/j.echo.2014.05.001

    Article  Google Scholar 

  15. Jardin F, Dubourg O (1986) L’exploration échocardiographique en médecine d’urgence. Masson, Paris

    Google Scholar 

  16. Lichtenstein D, Mezière G (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure. The BLUE-protocol. Chest 134:117–125

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goldhaber SZ (2002) Echocardiography in the management of pulmonary embolism. Ann Intern Med 136:691–700

    Article  PubMed  Google Scholar 

  18. Schmidt GA (1998) Pulmonary embolic disorders. In: Hall JB, Schmidt GA, Wood LDH (eds) Principles of critical care, 2nd edn. McGraw Hill, New York, pp 427–449

    Google Scholar 

  19. Jardin F (2009) Acute cor pulmonale. Curr Opin Crit Care 15(1)

    Google Scholar 

  20. Vieillard-Baron A, Cecconi M (2014) Understanding cardiac failure in sepsis. Intensive Care Med 40(10):1560–1563

    Article  PubMed  Google Scholar 

  21. Saleh M, Vieillard-Baron A (2012) On the role of left ventricular diastolic function in the critically ill patient (Editorial). Intensive Care Med 38:189–191

    Article  PubMed  Google Scholar 

  22. Horowitz RS, Morganroth J, Parrotto C, Chen CC, Soffer J, Pauletto FJ (1982) Immediate diagnosis of acute myocardial infarction by two-dimensional echocardiography. Circulation 65:323

    Article  CAS  PubMed  Google Scholar 

  23. Vignon P, Mentec H, Terré S, Gastinne H, Guéret P, Lemaire F (1994) Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 106:1829–1834

    Article  CAS  PubMed  Google Scholar 

  24. Lichtenstein D (2013) FALLS-protocol: lung ultrasound in hemodynamic assessment of shock. Heart Lung Vessel 5(3):142–147

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

1. Heart Routes

The left parasternal route is, as labelled, the left parasternal area (2010 Ed, Fig. 22.1). The apical route corresponds to the systolic shock. The left positioning is not easy in a ventilated patient. Mechanical ventilation often creates a hindrance to the transthoracic approach of the heart, and the subcostal route has been widely used in sedated supine patients. This is an abdominal approach, with the probe applied just to the xiphoid, body of the probe applied almost parallel the abdominal wall.

2. Measurements

Only rough estimates (some possibly obsolete) will be given. In a short axis at the pillar level, the LV walls (septal or posterior) are 6–11 mm thick in diastole. The LV chamber caliper is 38–56 mm. The RV free wall is less than 5 mm thick. A precise measurement of the RV volume should include subtle criteria, since its shape is complex.

An M-mode image through the LV small axis can measure (2010 Ed, Fig. 22.8) the LV chamber dimension in diastole, which indicates a dilatation, and this dimension in systole, which defines contractility. The difference of these two values, divided by the diastolic dimension, defines the LV shortening fraction, a parameter of the ventricular systolic function. It is normally 28–38 %.

The parietal thickening fraction (the ratio of the difference of diastolic and systolic thickening over diastolic thickening, normal range from 50 to 100 %) is less useful in our day (and above all night) routine.

3. Pericardial Tamponade

Some signs in concert with cardiac and respiratory cycles can be observed, in spontaneously breathing patients. Inspiration facilitates venous return, and the right ventricle dilates at the expense of the septum, which is more compliant than the free wall. The septum is shifted to the left and compresses the left ventricular chamber. Diastole creates a decrease in intracavitary pressures, whereas intrapericardial pressure remains constant. The right chambers are thus collapsed by the surrounding pressure. The right auricle wall collapses first, then the right ventricle.

The description of signs using Doppler would have a beneficial effect: showing physiopathologic patterns. It may also complicate the design, if time is wasted, if too sophisticated units are used, and if the operator is not trained enough.

Anecdotal Note

  1. 1.

    Hypovolemia

Traditionally, for diagnosing hypovolemia in a shocked patient, the heart is the main target (with Doppler and TEE). This textbook focuses at the lung – especially in extreme emergency and/or if no cardiac window is available. In the FALLS-protocol and SESAME-protocol, hypovolemia is defined by an A-profile (associated if possible with the ultrasound detection of massive free fluid).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lichtenstein, D.A. (2016). Simple Emergency Cardiac Sonography: A New Application Integrating Lung Ultrasound. In: Lung Ultrasound in the Critically Ill. Springer, Cham. https://doi.org/10.1007/978-3-319-15371-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15371-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15370-4

  • Online ISBN: 978-3-319-15371-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics