Skip to main content

What physical mechanisms govern waves in non-conservative systems?

  • Chapter
  • First Online:
Questions About Elastic Waves
  • 964 Accesses

Abstract

Most mathematical models described in the previous chapters are conservative like their prime example, the classical wave equation. The celebrated KdV equation is also conservative and admits infinitely many conserved quantities [2, 59]:

$$\displaystyle\begin{array}{rcl} \int _{-\infty }^{+\infty }u\mathit{dx} = \mathit{const}.,& &{}\end{array}$$
(7.1)
$$\displaystyle\begin{array}{rcl} \int _{-\infty }^{+\infty }u^{2}\mathit{dx} = \mathit{const}.,& &{}\end{array}$$
(7.2)
$$\displaystyle\begin{array}{rcl} \int _{-\infty }^{+\infty }(u^{3} + \frac{1} {2}u_{x}^{2})\mathit{dx} = \mathit{const}.,\ldots & &{}\end{array}$$
(7.3)

These equations express the conservation of mass , momentum, and energy, respectively. The accuracy of a numerical method can be checked by calculating these conserved quantities at every time step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J.: Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  2. Berezovski, A., Engelbrecht, J.: Thermoelastic waves in microstructured solids: dual internal variables approach. J. Coupled Syst. Multiscale Dyn. 1, 112–119 (2013)

    Article  Google Scholar 

  3. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)

    Article  MATH  Google Scholar 

  4. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Thermoelasticity with dual internal variables. J. Therm. Stresses 34(5–6), 413–430 (2011)

    Article  Google Scholar 

  5. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11), 1981–1990 (2013)

    Article  Google Scholar 

  6. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Courier Dover Publications, New York (2012)

    Google Scholar 

  7. Bountis, T., Starmer, C., Bezerianos, A.: Stationary pulses and wave front formation in an excitable medium. Prog. Theor. Phys. Suppl. 139, 12–33 (2000)

    Article  Google Scholar 

  8. Christov, I.C.: Hidden solitons in the Zabusky–Kruskal experiment: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 82(6), 1069–1078 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conte, R., Musette, M.: Solitary waves of nonlinear nonintegrable equations. In: Akhmediev, N., Ankiewicz, A. (eds.) Dissipative Solitons. Lecture Notes in Physics, vol. 661, pp. 373–406. Springer, Berlin (2005)

    Chapter  Google Scholar 

  10. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  11. Engelbrecht, J.: On theory of pulse transmission in a nerve fibre. Proc. R. Soc. Lond. A 375, 195–209 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Engelbrecht, J. (ed.): Nonlinear Waves in Active Media. Springer, Berlin (1989)

    Google Scholar 

  13. Engelbrecht, J.: An Introduction to Asymmetric Solitary Waves. Longman, Harlow (1991)

    MATH  Google Scholar 

  14. Engelbrecht, J.: Complexity in mechanics. Rend. Sem. Mat. Univ. Pol. Torino 67(3), 293–325 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Engelbrecht, J., Salupere, A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015114 (2005)

    Article  Google Scholar 

  16. Engelbrecht, J., Fridman, V., Pelinovski, E.: Nonlinear Evolution Equations. Longman, Harlow (1988)

    MATH  Google Scholar 

  17. Engelbrecht, J., Tamm, K., Peets, T.: On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. 14(1), 159–167 (2015)

    Article  Google Scholar 

  18. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  19. Gross, D., Williams, W.S., Connor, J.A.: Theory of electromechanical effects in nerve. Cell. Mol. Neurobiol. 3(2), 89–111 (1983)

    Article  Google Scholar 

  20. Heimburg, T., Jackson, A.D.: On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. 102(28), 9790–9795 (2005)

    Article  Google Scholar 

  21. Heimburg, T., Jackson, A.D.: On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. 2(01), 57–78 (2007)

    Article  Google Scholar 

  22. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  23. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  24. Iwasa, K., Tasaki, I., Gibbons, R.C.: Swelling of nerve fibers associated with action potentials. Science 210, 338–339 (1980)

    Article  Google Scholar 

  25. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, vol. 1. Pitman, Boston (1982)

    MATH  Google Scholar 

  26. Karpman, V.: Soliton evolution in the presence of perturbation. Phys. Scr. 20(3–4), 462–478 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kawahara, T., Toh, S.: Pulse interactions in an unstable dissipative-dispersive nonlinear system. Phys. Fluids 31(8), 2103–2111 (1988)

    Article  MathSciNet  Google Scholar 

  28. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  29. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  30. Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoff, Leyden and P.W.N., Warsaw (1975)

    Google Scholar 

  31. Ostrovsky, L.A.: Solitons in active media. In: Nigul, U., Engelbrecht, J. (eds.) Proceedings of IUTAM Symposium. Nonlinear Deformation Waves, pp. 30–43. Springer, Berlin (1983)

    Chapter  Google Scholar 

  32. Parkus, H.: Thermoelasticity. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  33. Salupere, A., Maugin, G.A., Engelbrecht, J.: Korteweg-de Vries soliton detection from a harmonic input. Phys. Lett. A 192, 5–8 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Salupere, A., Maugin, G., Engelbrecht, J., Kalda, J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1), 49–66 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Scott, A.: Nonlinear Science. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  36. Scott, A. (ed.): Encyclopedia of Nonlinear Science. Taylor and Francis, New York (2005)

    MATH  Google Scholar 

  37. Scott, A.: The Nonlinear Universe. Chaos, Emergence, Life. Springer, Berlin (2010)

    Google Scholar 

  38. Tamma, K.K., Zhou, X.: Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives. J. Therm. Stresses 21, 405–449 (1998)

    Article  Google Scholar 

  39. Tasaki, I.: Review: a macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. 21, 251–268 (1988)

    Google Scholar 

  40. Tasaki, I., Kusano, K., Byrne, P.M.: Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J. 55(6), 1033–1040 (1989)

    Article  Google Scholar 

  41. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)

    Article  MATH  Google Scholar 

  42. Veski, K.: Influence of parameters in forming the action potential. M.Sc. thesis, Tallinn University of Technology (2007)

    Google Scholar 

  43. Zhurkov, S.: The dilaton mechanism of the strength of solids. Sov. Phys. Solid State 25(10), 1797–1800 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelbrecht, J. (2015). What physical mechanisms govern waves in non-conservative systems?. In: Questions About Elastic Waves. Springer, Cham. https://doi.org/10.1007/978-3-319-14791-8_7

Download citation

Publish with us

Policies and ethics