Skip to main content

Dysregulated Expression of Protein Kinase CK2 in Renal Cancer

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Abstract

Renal cell carcinomas (RCCs) have notoriously been shown to be refractory to traditional therapies including radiation and cytokine therapies. The use of molecularly targeted therapies against mTOR, VEGF, and other angiogenic factors has significantly improved the standards of care of this disease. Yet, improvements are still required as many of the current therapies are limited by acquired resistance. However, the recent development of molecular targeted therapies involving kinase inhibitors has changed the clinical management of RCCs. Protein kinase CK2 is critical for the activation of multiple pro-survival signaling pathways, and its catalytic activity is invariably elevated in various types of tumors. However, the precise role of CK2 has never been addressed in RCCs. In this study, we have analyzed the activity of CK2 and the expression of its subunits in a small cohort of RCC tumors. This analysis revealed, in the majority of tumor samples, an upregulation of the CK2 catalytic subunits that was not correlated with mRNA abundance in the majority of tumor samples. Moreover, relative levels of the three CK2 subunits varied significantly between tumor samples, and a positive correlation was observed between low CK2β expression and an upregulation of the ZEB2 mesenchymal marker in a subset of tumor samples. Using the CK2 inhibitor CX-4945 to downregulate the CK2 catalytic activity in 786-O cells as a model of VHL-deficient renal cancer cell line, we showed that CK2 represents a potential promising therapeutic target in RCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM et al (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69(11):4674–4681, PubMed PMID: 19470766. Pubmed Central PMCID: 2745239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Furge KA, MacKeigan JP, Teh BT (2010) Kinase targets in renal-cell carcinomas: reassessing the old and discovering the new. Lancet Oncol 11(6):571–578, PubMed PMID: 20381423

    Article  CAS  PubMed  Google Scholar 

  3. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784(1):33–47, PubMed PMID: 17931986

    Article  CAS  PubMed  Google Scholar 

  4. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804(3):499–504, PubMed PMID: 19665589

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE et al (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298, PubMed PMID: 21159648

    Article  CAS  PubMed  Google Scholar 

  6. Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M et al (2011) Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem 54(2):635–654, PubMed PMID: 21174434

    Article  CAS  PubMed  Google Scholar 

  7. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Combes F, Vandenbrouck Y et al (2013) Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32(11):1373–1383, PubMed PMID: 22562247

    Article  CAS  PubMed  Google Scholar 

  8. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408, PubMed PMID: 11846609

    Article  CAS  PubMed  Google Scholar 

  9. Filhol O, Cochet C, Wedegaertner P, Gill GN, Chambaz EM (1991) Coexpression of both alpha and beta subunits is required for assembly of regulated casein kinase II. Biochemistry 30(46):11133–11140, PubMed PMID: 1932033

    Article  CAS  PubMed  Google Scholar 

  10. Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstadt D et al (2014) Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget 5(8):2131–2148, PubMed PMID: 24742922

    PubMed Central  PubMed  Google Scholar 

  11. Liu S, Qi L, Yu Q, Song Y, Han W, Zu X et al (2014) Survivin and HLA-I expression predicts survival of patients with clear cell renal cell carcinoma. Tumour Biol 35:8281–8288, PubMed PMID: 24852427

    Article  CAS  PubMed  Google Scholar 

  12. Ponce DP, Yefi R, Cabello P, Maturana JL, Niechi I, Silva E et al (2011) CK2 functionally interacts with AKT/PKB to promote the beta-catenin-dependent expression of survivin and enhance cell survival. Mol Cell Biochem 356(1–2):127–132, PubMed PMID: 21735093

    Article  CAS  PubMed  Google Scholar 

  13. Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276(2):993–998, PubMed PMID: 11035045

    Article  CAS  PubMed  Google Scholar 

  14. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F et al (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12(6):668–677, PubMed PMID: 15818404

    Article  PubMed  Google Scholar 

  15. Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277(13):11352–11361, PubMed PMID: 11756412

    Article  CAS  PubMed  Google Scholar 

  16. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q et al (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-catenin from beta-catenin and transactivation of beta-catenin. Mol Cell 36(4):547–559, PubMed PMID: 19941816. Pubmed Central PMCID: 2784926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275(22):16569–16573, PubMed PMID: 10747897

    Article  CAS  PubMed  Google Scholar 

  18. Kramerov AA, Golub AG, Bdzhola VG, Yarmoluk SM, Ahmed K, Bretner M et al (2011) Treatment of cultured human astrocytes and vascular endothelial cells with protein kinase CK2 inhibitors induces early changes in cell shape and cytoskeleton. Mol Cell Biochem 349(1–2):125–137, PubMed PMID: 21125314. Pubmed Central PMCID: 3426611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kim HD, Yu SJ, Kim HS, Kim YJ, Choe JM, Park YG et al (2013) Interleukin-4 induces senescence in human renal carcinoma cell lines through STAT6 and p38 MAPK. J Biol Chem 288(40):28743–28754, PubMed PMID: 23935100. Pubmed Central PMCID: 3789971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hadjal Y, Hadadeh O, Yazidi CE, Barruet E, Binetruy B (2013) A p38MAPK-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells. Cell Death Dis 4:e737, PubMed PMID: 23887628. Pubmed Central PMCID: 3730419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. De Amicis F, Giordano F, Vivacqua A, Pellegrino M, Panno ML, Tramontano D et al (2011) Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells. FASEB J 25(10):3695–3707, PubMed PMID: 21737614. Pubmed Central PMCID: 3177579

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lahlou H, Saint-Laurent N, Esteve JP, Eychene A, Pradayrol L, Pyronnet S et al (2003) sst2 somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J Biol Chem 278(41):39356–39371, PubMed PMID: 12878607

    Article  CAS  PubMed  Google Scholar 

  23. Olsen BB, Svenstrup TH, Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41(6):1967–1976, PubMed PMID: 23007634. Pubmed Central PMCID: 3583692

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A et al (2014) The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer 14:149, PubMed PMID: 24593195. Pubmed Central PMCID: 4015755

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cuadros T, Trilla E, Sarro E, Vila MR, Vilardell J, de Torres I et al (2014) HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res 74(5):1416–1428, PubMed PMID: 24390735

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H et al (2013) Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19(23):6484–6494, PubMed PMID: 24036851. Pubmed Central PMCID: 3932633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, Tefferi A et al (2011) A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118(1):156–166, PubMed PMID: 21527517. Pubmed Central PMCID: 3139382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li P, Yuan S, Galipeau J (2013) A fusion cytokine coupling GMCSF to IL9 induces heterologous receptor clustering and STAT1 hyperactivation through JAK2 promiscuity. PLoS One 8(7):e69405, PubMed PMID: 23840913. Pubmed Central PMCID: 3698169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J et al (2013) miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PloS One 8(10):e76247, PubMed PMID: 24098452. Pubmed Central PMCID: 3789742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rivera MN, Haber DA (2005) Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 5(9):699–712, PubMed PMID: 16110318

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Kim SH (2012) Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res 35(8):1293–1296, PubMed PMID: 22941473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the INSERM, CEA, Ligue Nationale contre le Cancer (équipe labellisée 2010–2012), UJF, Ligue Régionale contre le Cancer (Isère), Fondation de France, ARC, and Projet CIBLE. We thank Marlène Debiossat for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odile Filhol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roelants, C. et al. (2015). Dysregulated Expression of Protein Kinase CK2 in Renal Cancer. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_14

Download citation

Publish with us

Policies and ethics