Skip to main content

Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 29))

Abstract

A consistent relativistic approach, based on the atomic gauge-invariant relativistic perturbation theory and the exchange perturbation theory, is presented and applied to calculating the interatomic potentials, van der Waals constants, hyperfine structure line collision shift and broadening for heavy atoms in an atmosphere of the buffer inert gas. The corresponding data on the collision hyperfine line shift and broadening for the thallium, alkali (Rb, Cs) and lanthanide (ytterbium) atoms in an atmosphere of the inert gas (He, Kr, Xe) are listed and compared with available alternative theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan IG (1985) Theory of intermolecular interactions. Nauka, Moscow, pp 1–380

    Google Scholar 

  2. Kaplan IG, Rodimova OB (1987) Phys Usp 126:403

    Article  Google Scholar 

  3. Nikitin EE (1980) In: Nikitin EE, Umansky SYa (eds) Semiempirical methods of calculation of interatomic interaction potentials. Series: Structure of molecules and chemical bond, vol 4. VINITI, Moscow, pp 1–220

    Google Scholar 

  4. Devdariani AL (1989) In: Smirnov BM, Devdariani AL, Zagrebin AL (eds) Chemistry of plasma, vol 15. Nauka, Moscow, p 44

    Google Scholar 

  5. Torrens IM (1972) Interatomic potentials. Academic Press, New York, pp 1–390

    Book  Google Scholar 

  6. Freeman AJ, Frankel RH (1987) Hyperfine interactions. Plenum, New York, pp 1–360

    Google Scholar 

  7. Weiner J, Bagnato VS, Zilio S, Julienne PS (1999) Rev Mod Phys 71:1

    Article  CAS  Google Scholar 

  8. Eisenschitz R, London F (1930) Zs Phys 60:491

    Google Scholar 

  9. Hirschfelder JO (1967) Chem Phys Lett 1:325, 363

    Google Scholar 

  10. van der Avoird Ad (1967) J Chem Phys 47:3649

    Article  Google Scholar 

  11. Murrel JN, Shaw G (1967) J Chem Phys 46:1768

    Article  Google Scholar 

  12. Musher JI, Amos AT (1967) Phys Rev 164:31

    Article  CAS  Google Scholar 

  13. Sobel’man II (1977) Introduction to theory of atomic spectra. Nauka, Moscow, pp 1–380

    Google Scholar 

  14. Glushkov AV (2006) Relativistic and correlation effects in theory of atomic spectra. Astroprint, Odessa, pp 1–450

    Google Scholar 

  15. Grim G (1974) Broadening spectral lines in plasmas. Academic Press, New York, pp 1–480

    Google Scholar 

  16. Oks E (2010) Int J Spectrosc 10:852581

    Google Scholar 

  17. Unsöld A (1977) The new cosmos. Springer, Berlin, p 169

    Google Scholar 

  18. Khetselius OYu, Glushkov AV, Loboda AV, Gurnitskaya EP, Mischenko EV, Florko TA, Sukharev DE (2008) Spectral line shapes 15:231

    Google Scholar 

  19. Glushkov AV, Khetselius OYu, Loboda AV, Gurnitskaya EP, Mischenko EV (2009) Theory and applications of computational chemistry (AIP) 1113:131

    Google Scholar 

  20. Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Mischenko EV, Florko TA (2009) Int J Quant Chem 109:3325

    Article  CAS  Google Scholar 

  21. Khetselius OYu, Florko TA, Svinarenko AA, Tkach TB (2013) Phys Scr T153:014037

    Article  Google Scholar 

  22. Cheron B, Scheps R, Gallagher A (1976) J Chem Phys 65:326

    Article  CAS  Google Scholar 

  23. Aumar F, Winter H (eds) (1997) Photonic, electronic, atomic collisions. World Scientific, Singapore, pp 1–630

    Google Scholar 

  24. Turner D, Baker C, Baker A, Brunrile C (1997) Molecular photoelectron spectroscopy. Wiley, New York, pp 1–540

    Google Scholar 

  25. Batygin VV, Matisov BG (1976) J Techn Phys 46:221

    CAS  Google Scholar 

  26. Alexandrov EB, Popov VI, Yakobson NN (1979) Opt Spectrosc 46:404

    Google Scholar 

  27. Batygin VV, Sokolov IM (1983) Opt Spectrosc 55:30

    CAS  Google Scholar 

  28. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa, pp 1–900

    Google Scholar 

  29. Khetselius OYu (2008) Hyperfine structure of atomic spectra: new methods and applications. Astroprint, Odessa, pp 1–240

    Google Scholar 

  30. Batygin VV, Guzhva YuV, Matisov BG, Toptygin IN (1977) JETP 47:2414

    CAS  Google Scholar 

  31. Batygin VV, Gorny MB, Ivanov AN, Matisov BG (1977) J Techn Phys 47:2414

    CAS  Google Scholar 

  32. Batygin VV, Gorny MB, Gurevich BM (1978) J Techn Phys 48:1097

    CAS  Google Scholar 

  33. Penkin NP, Ruzov VP, Shabanova LN (1973) Opt Spectrosc 35:601

    CAS  Google Scholar 

  34. Chi X, Dalgarno A, Groenenborn GC (2007) Phys Rev A 75:032723

    Article  Google Scholar 

  35. Jamieson MJ, Drake GWF, Dalgarno A (1995) Phys Rev A 51:3358

    Article  CAS  Google Scholar 

  36. Glushkov AV, Ambrosov SV, Khetselius OYu, Loboda AV, Gurnitskaya EP (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in the theory of chemical and physical systems. Series: progress in theoretical chemistry and physics, vol 15. Springer, Berlin, p 285

    Google Scholar 

  37. Glushkov AV, Khetselius OYu, Gurnitskaya EP, Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 505

    Google Scholar 

  38. Glushkov AV, Malinovskaya SV, Svinarenko AA, Chernyakova YuG (2004) Int J Quant Chem 99:889

    Article  CAS  Google Scholar 

  39. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J QuantChem 104:562

    Google Scholar 

  40. Glushkov AV, Ambrosov SV, Khetselius OYu, Loboda AV, Chernyakova YuG, Svinarenko AA (2004) Nucl Phys A 734S:21

    Google Scholar 

  41. Glushkov AV, Khetselius OYu, Lovett L, Gurnitskaya EP, Dubrovskaya YuV, Loboda AV (2009) Int J Mod Phys A: Part Fields Nucl Phys 24:611

    Article  CAS  Google Scholar 

  42. Khetselius OYu (2009) Int J Quant Chem 109:3330

    Article  CAS  Google Scholar 

  43. Khetselius OYu (2009) Phys Scr T135:014023

    Article  Google Scholar 

  44. Khetselius OYu (2012) J Phys C Ser 397:012012

    Article  Google Scholar 

  45. Glushkov AV, Ambrosov SV, Loboda AV, Prepelitsa GP, Gurnitskaya EP (2005) Int J Quant Chem 104:562

    Article  CAS  Google Scholar 

  46. Glushkov AV, Malinovskaya SV, Khetselius OYu, Dubrovskaya YuV, Gurnitskaya EP (2006) J Phys CS 35:425

    CAS  Google Scholar 

  47. Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Loboda AV, Lopatkin YuM, Nikola LV (2011) Int J Quant Chem 111:288

    Article  CAS  Google Scholar 

  48. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 523

    Google Scholar 

  49. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Eur Phys J ST 160:195 (2008)

    Google Scholar 

  50. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Mol Phys 106:1257

    Google Scholar 

  51. Glushkov AV, Khetselius OYu, Loboda AV, Svinarenko AA (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 541

    Google Scholar 

  52. Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scr T 135:014022

    Article  Google Scholar 

  53. Glushkov AV, Khetselius OYu, Lovett L (2009) In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. Series: progress in theoretical chemistry and physics, vol 20. Springer, Berlin, pp 125–172

    Google Scholar 

  54. Glushkov AV, Khetselius OYu, Svinarenko AA (2012) In: Hoggan P, Brändas E, Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 22. Springer, Berlin, pp 51–70

    Google Scholar 

  55. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, p 58

    Google Scholar 

  56. Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33

    Article  CAS  Google Scholar 

  57. Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation. Springer series on atomic, optical, and plasma physics, vol 40. Springer, Berlin, pp 1–587

    Google Scholar 

  58. Grant IP, Quiney HM (2000) Int J Quant Chem 80:283

    Article  CAS  Google Scholar 

  59. Wilson S (2007) In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems. Series: progress in theoretical chemistry and physics, vol 16. Springer, Berlin, p 11

    Google Scholar 

  60. Glushkov AV (1992) JETP Lett 55:97

    Google Scholar 

  61. A.V. Glushkov (1998) Opt Spectrosc 84:670

    Google Scholar 

  62. Glushkov AV (1998) Russ J Struct Chem 39:220

    Google Scholar 

  63. Glushkov AV, Malinovskaya SV (1988) Russ J Phys Chem 62:100

    CAS  Google Scholar 

  64. Ivanov LN, Ivanova EP (1979) Atom Data Nucl Data Tabl 24:95

    Article  CAS  Google Scholar 

  65. Ivanova EP, Ivanov LN, Glushkov AV, Kramida A (1985) Phys Scr 32:512

    Article  Google Scholar 

  66. Glushkov AV, Ivanova EP (1986) J Quant Spectrosc Radiat Transfer 36:127

    Article  Google Scholar 

  67. Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365

    Article  CAS  Google Scholar 

  68. Ivanova EP, Ivanov LN, Aglitsky EV (1988) Phys Rep 166:315

    Article  Google Scholar 

  69. Ivanova EP, Ivanov LN (1996) JETP 83:258

    Google Scholar 

  70. Ivanova EP, Grant IP (1998) J Phys B 31:2871

    Article  CAS  Google Scholar 

  71. Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169

    Google Scholar 

  72. Glushkov AV, Ivanov LN, Letokhov VS (1991) Preprint of institute for spectroscopy of USSR Academy of Sciences (ISAN), N AS-5, Troitsk

    Google Scholar 

  73. Vidolova-Angelova E, Ivanov LN, Angelov DA (1988) J Phys B: At Mol Opt Phys 21:3877

    Google Scholar 

  74. Vidolova-Angelova E, Ivanova EP, Ivanov LN (1981) Opt Spectrosc 50:243

    CAS  Google Scholar 

  75. Bekov GI, Vidolova-Angelova E, Ivanov LN, Letokhov VS, Mishin VI (1981) Soviet-JETP 80:866

    CAS  Google Scholar 

  76. Nemukhin AB, Stepanov NF (1984) Herald of Moscow State Univ Ser Chem 18:282

    Google Scholar 

  77. Kupriyanov D, Sokolov S (1986) Sov Chem Phys 5:1160

    CAS  Google Scholar 

  78. Aubert M, Bessis M, Bessis G (1974) Phys Rev A 10:51

    Article  CAS  Google Scholar 

  79. Aubert M, Bessis M, Bessis G (1974) Phys Rev A 10:61

    Article  CAS  Google Scholar 

  80. Bellomonte L, Cavaliere P, Ferrante G (1974) J Chem Phys 61:3225

    Article  CAS  Google Scholar 

  81. Aguilar J, Nakamura H (1976) Chem Phys 32:115

    Article  Google Scholar 

  82. Masnou F, Philips N, Valiron P (1978) Phys Chem Lett 41:395

    Google Scholar 

  83. Luh W-T, Bahns JT (1988) J Chem Phys 88:2235

    Article  CAS  Google Scholar 

  84. Frauss M, Stevens WJ (1990) J Chem Phys 93:4236

    Article  Google Scholar 

  85. Clementi E, Roothaan CCJ, Yoshimine M (1962) Phys Rev 127:1618

    Article  CAS  Google Scholar 

  86. Löwdin PO (1953) Phys Rev 30:120

    Article  Google Scholar 

  87. Gruzdev PF, Solov’eva SG, Sherstyuk AI (1988) Russ Phys J 29(N1):73

    Google Scholar 

  88. Glushkov AV, Polischuk VP, Kivganov AF, Khokhlov VN, Buyadzhi TV, Vitavetskaya LA, Borovskaya GA (1998) Russ Phys J 41(N3):36

    Article  Google Scholar 

  89. Buchachenko AA, Szczesniak MM, Chalazinski G (2006) J Chem Phys 124:114301

    Article  Google Scholar 

  90. Jamieson MJ, Dalgarno A, Aymar M, Tharamel J (2009) J Phys B: At Mol Opt Phys 42:095203

    Article  Google Scholar 

  91. Kohn W, Sham LJ (1964) Phys Rev A 140:1133

    Article  Google Scholar 

  92. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  93. Chu X, Chu S-I (2000) Phys Rev A 63:013414

    Google Scholar 

  94. Chu X, Chu S-I (2001) Phys Rev A 63:023411

    Google Scholar 

  95. Gross EG, Kohn W (2005) Exchange-correlation functionals in density functional theory. Plenum, New York

    Google Scholar 

  96. Gidopoulos N, Wilson S (eds) The fundamentals of electron density, density matrix and density functional theory in atoms, molecules and the solid state. Series: progress in theoretical chemistry and physics, vol 14. Springer, Berlin, p 1

    Google Scholar 

  97. Krunisz MD (1982) Acta Phys Pol A 62:285

    Google Scholar 

  98. Glushkov AV, Khetselius OYu, Svinarenko AA (2013) Phys Scr T153:014029

    Google Scholar 

  99. Vadla C, Horvatic V, Niemax K (2001) Eur Phys J D 14:23

    Article  CAS  Google Scholar 

  100. Horvatic V, Veza D, Movre M, Niemax K, Vadla C (2008) Spectrochim Acta B 63:652

    Article  Google Scholar 

  101. Kötteritzsch M, Gries W, Hese A (1992) J Phys B: At Mol Opt Phys 25:913

    Article  Google Scholar 

  102. Ehrlacher E, Huennekens J (1992) Phys Rev A 46:2642

    Article  CAS  Google Scholar 

  103. Singer K, Reetz-Lamour M, Amthor T, Marcassa L, Weidemuller M (2004) Phys Rev Lett 93:163001

    Article  Google Scholar 

  104. Hancox CI, Doret SC, Hummon MT, Luo L, Doyle JM (2004) Nature (London) 431:281

    Article  CAS  Google Scholar 

  105. Hancox CI, Doret SC, Hummon MT, Krems RV, Doyle JM (2005) Phys Rev Lett 94:013201

    Article  Google Scholar 

  106. Khetselius OYu (2012) In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Quantum systems in chemistry and physics: progress in methods and applications. Series: progress in theoretical chemistry and physics, vol 26. Springer, Berlin, pp 217–230

    Google Scholar 

Download references

Acknowledgments

The support of the Odessa State University—OSENU as well as of the Ministry of Education and Science of Ukraine (2013) is acknowledged. The author would like to thank Prof. Marco Nascimento for his invitation to present this contribution at QSCP-XVIII (Paraty, Rio de Janeiro, Brazil), and Prof. Andrey N. Starostin (Centre for Theoretical Physics and Computational Mathematics, Research State Center of the Russian Federation “Troitsk Institute for Innovation and Fusion Research”, Troitsk, Russian Federation) and Vladimir G. Shevchuk (Department of Chemical Physics, Odessa National University, Odessa, Ukraine) for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Yu. Khetselius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khetselius, O.Y. (2015). Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_4

Download citation

Publish with us

Policies and ethics