Skip to main content

Abstract

In this chapter, we study a linear sound wave in a rarefied polyatomic gas in equilibrium with the aim of clarifying the validity and the features of the ET14 theory established in Chap. 5 We derive the dispersion relations on the basis of the ET14 theory and of the classical Navier-Stokes Fourier (NSF) theory. Comparison of these relations with experimental data reveals clearly the superiority of the ET14 theory to the NSF theory. We confine our analysis within sound waves in some rarefied diatomic gases (hydrogen, deuterium, and hydrogen deuteride gases) because suitable experimental data are scarce and are mainly restricted to rarefied gases. We also evaluate the relaxation times, and the shear and bulk viscosities and the heat conductivity of the gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 4th edn. (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  2. T.G. Winter, G.L. Hill, High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen. J. Acoust. Soc. Am. 42, 848 (1967)

    Article  Google Scholar 

  3. E.J. Rhodes Jr., The velocity of sound in hydrogen when rotational degrees of freedom fail to be excited. Phys. Rev. 70(11), 932 (1946)

    Google Scholar 

  4. C. Sluijter, H. Knaap, J. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures. I. Physica 30, 745 (1964)

    Article  Google Scholar 

  5. E.S. Stewart, J.L. Stewart, Rotational dispersion in the velocity, attenuation, and reflection of ultrasonic waves in hydrogen and deuterium. J. Acoust. Soc. Am. 24, 194 (1952)

    Article  Google Scholar 

  6. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, 3rd Edition Part 1 (Pergamon Press, Oxford, 1980)

    Google Scholar 

  7. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon Press, Oxford, 1980)

    Google Scholar 

  8. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin/Heidelberg/New York/Tokyo, 1985)

    Book  Google Scholar 

  9. C.G. Sluijter, R.M. Jonkman, Sound absorption measurements in para hydrogen at 170 K. Physica 30, 1670 (1964)

    Article  Google Scholar 

  10. H.J.M. Hanley, R.D. McCarty, H. Interman, The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. J. Res. Nat. Bur. Stand. Sect. A 74, 331 (1970)

    Article  Google Scholar 

  11. M.J. Assael, S. Mixafendi, W.A. Wakeham, The viscosity of normal deuterium in the limit of zero density. J. Phys. Chem. Ref. Data 16, 189 (1987)

    Article  Google Scholar 

  12. S.C. Saxena, W.K. Saxena, Thermal conductivity data for hydrogen and deuterium in the range 100–1100 degrees C. J. Phys. A 3, 309 (1970)

    Article  Google Scholar 

  13. W.P. Mason (ed.), Physical Acoustics, Principles and Methods, vol. II-Part A (Academic, New York/London, 1965)

    Google Scholar 

  14. W.G. Vincenti, C.H. Kruger Jr., Introduction to Physical Gas Dynamics (Wiley, New York/London/Sydney, 1965)

    Google Scholar 

  15. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  16. B.C. Eu, Y.G. Ohr, Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases. Phys. Fluids 13(3), 744 (2001)

    Google Scholar 

  17. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799 (2012)

    Article  MathSciNet  Google Scholar 

  18. G. Emanuel, Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A 2(12), 2252 (1990)

    Google Scholar 

  19. W.E. Meador, G.A. Miner, L.W. Townsend, Bulk viscosity as a relaxation parameter: fact or fiction? Phys. Fluids A 8(1), 258 (1996)

    Google Scholar 

  20. G. Emanuel, Bulk viscosity as a relaxation parameter: fact or fiction? [Phys. Fluids 8, 258 (1996)]. Phys. Fluids A 8(7), 1984 (1996)

    Google Scholar 

  21. G. Emanuel, Bulk viscosity in the Navier-Stokes equations. Int. J. Eng. Sci. 36, 1313 (1998)

    Article  Google Scholar 

  22. R.E. Graves, B.M. Argrow, Bulk viscosity: past to present. J. Thermophys. Heat Transf. 13(3), 337 (1999)

    Google Scholar 

  23. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1963)

    Google Scholar 

  24. H.J. Bauer, Phenomenological theory of the relaxation phenomena in gases, in Physical Acoustics II Part A, ed. by W.P. Mason (Academic, New York/London, 1965), pp. 47–131

    Google Scholar 

  25. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Continuum Mech. Thermodyn. 25, 727 (2013)

    Article  MathSciNet  Google Scholar 

  26. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, A study of linear waves based on extended thermodynamics for rarefied polyatomic gases. Acta Appl. Math. 132, 15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). Linear Wave in a Polyatomic Gas. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_7

Download citation

Publish with us

Policies and ethics