Skip to main content
Log in

Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study the dispersion relation for sound in rarefied polyatomic gases (hydrogen, deuterium and hydrogen deuteride gases) basing on the recently developed theory of extended thermodynamics (ET) of dense gases. We compare the relation with those obtained in experiments and by the classical Navier–Stokes Fourier (NSF) theory. The applicable frequency range of the ET theory is proved to be much wider than that of the NSF theory. We evaluate the values of the bulk viscosity and the relaxation times involved in nonequilibrium processes. The relaxation time related to the dynamic pressure has a possibility to become much larger than the other relaxation times related to the shear stress and the heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller I., Ruggeri T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Continuum Mech. Thermodyn. (2011). doi:10.1007/s00161-011-0213-x

  3. Liu I.-S.: Extended thermodynamics of fluids and virial equations of state. Arch. Ration. Mech. Anal. 88, 1–23 (1985)

    ADS  MATH  Google Scholar 

  4. Kremer G.M.: Extended thermodynamics of non-ideal gases. Physica 144A, 156–178 (1987)

    ADS  Google Scholar 

  5. Liu I.-S., Kremer G.M.: Hyperbolic system of field equations for viscous fluids. Mat. Aplic. Comp 9(2), 123–135 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Liu I.-S., Salvador J.A.: Hyperbolic system for viscous fluids and simulation of shock tube flows. Continuum Mech. Thermodyn. 2, 179–197 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Kremer G.M: On extended thermodynamics of ideal and real gases. In: Sieniutycz, S., Salamon, P. (eds.) Extended Thermodynamics Systems, pp. 140–182. Taylor and Francis, New York (1992)

    Google Scholar 

  8. Carrisi M.C., Mele M.A., Pennisi S.: On some remarkable properties of an extended thermodynamics model for dense gases and macromolecular fluids. Proc. R. Soc. A 466, 1645–1666 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A (submitted)

  10. De Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1963)

    Google Scholar 

  11. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Pergamon, London (1958)

    Google Scholar 

  12. Ikenberry E., Truesdell C.: On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Ration. Mech. Anal. 5, 1–54 (1956)

    MathSciNet  MATH  Google Scholar 

  13. Muracchini A., Ruggeri T., Seccia L.: Dispersion relation in the high frequency limit and non linear wave stability for hyperbolic dissipative systems. Wave Motion. 15(2), 143–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rhodes E.J. Jr.: The velocity of sound in hydrogen when rotational degrees of freedom fail to be excited. Phys. Rev. 70(11), 932–938 (1946)

    Article  ADS  Google Scholar 

  15. Sluijter C.G., Knaap H.F.P., Beenakker J.J.M.: Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures. I. Physica. 30, 745–762 (1964)

    Article  ADS  Google Scholar 

  16. Landau L.D., Lifshitz E.M.: Statistical Physics. Pergamon, Oxford (1980)

    Google Scholar 

  17. Landau L.D., Lifshitz E.M.: Quantum Mechanics, Non-Relativistic Theory. Pergamon, Oxford (1977)

    Google Scholar 

  18. Radzig A.A., Smirnov B.M.: Reference Data on Atoms, Molecules, and Ions. Springer, Berlin (1985)

    Book  Google Scholar 

  19. Mason, W.P. (ed.): Physical Acoustics, Principles and Methods, Vol. II-Part A. Academic Press, New York (1965)

    Google Scholar 

  20. Vincenti W.G., Kruger C.H. Jr: Introduction to Physical Gas Dynamics. Wiley, New York (1965)

    Google Scholar 

  21. Chapman S., Cowling T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  22. Eu B.C., Ohr Y.G.: Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases. Phys. Fluids. 13(3), 744–753 (2001)

    Article  ADS  Google Scholar 

  23. Arima T., Taniguchi S., Ruggeri T., Sugiyama M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  24. Emanuel G.: Bulk viscosity of a dilute polyatomic gas. Phys. Fluids. A 2(12), 2252–2254 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  25. Meador W.E., Miner G.A., Townsend L.W.: Bulk viscosity as a relaxation parameter: fact or fiction?. Phys. Fluids. A 8(1), 258 (1996)

    Article  ADS  MATH  Google Scholar 

  26. Emanuel G.: “Bulk viscosity as a relaxation parameter: fact or fiction?” [Phys. Fluids 8, 258 (1996)]. Phys. Fluids. A 8(7), 1984 (1996)

    Article  ADS  Google Scholar 

  27. Emanuel G.: Bulk viscosity in the Navier–Stokes equations. Int. J. Eng. Sci. 36, 1313–1323 (1998)

    Article  Google Scholar 

  28. Graves R.E., Argrow B.M.: Bulk viscosity: past to present. J. Thermophys. Heat Transf. 13(3), 337–342 (1999)

    Article  Google Scholar 

  29. Bauer H.J.: Phenomenological theory of the relaxation phenomena in gases. In: Mason, W.P. (ed.) Physical Acoustics II Part A, pp. 47–131. Academic Press, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Arima.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arima, T., Taniguchi, S., Ruggeri, T. et al. Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Continuum Mech. Thermodyn. 25, 727–737 (2013). https://doi.org/10.1007/s00161-012-0271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0271-8

Keywords

Navigation