Skip to main content

Transformation of Triphenyltin by Eubacteria: Fate and Effects in Environmental System

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria
  • 476 Accesses

Abstract

Organotins such as triphenyltin (TPT) form an important group of bio-environmental tin-substituted aromatic contaminants used in various industries. Anthropogenic activities have led to an increase in TPT concentrations in water, soil, sediments and organisms. Knowledge about the environmental concentrations of any chemical compound is required to understand its effects on the system. Presence of such compounds in the environment is a serious threat and danger for human health and aquatic organisms and these combinations are very resistant against degradation. The reduction of TPT compounds in polluted ecosystems is a function of physical (adsorption to suspended solids and sediments), chemical (chemical and photochemical degradation) and biological (uptake and biological degradation) removal mechanisms.

In the present study, triphenyltin-transforming bacteria were isolated from polluted harbors by enrichment technique and their growth in presence of this substrate was investigated. Genus assignment of the 24 bacterial isolates indicated that the Gram-negative organisms belonged to Enterobacter, Pseudomonas and Vibrio, while Gram-positive organisms were identified as Bacillus, Staphylococcus and Streptococcus. Among all the isolates identified, Pseudomonas spp. were predominant and accounted for 48 % of the total bacterial isolates, followed by Bacillus (24 %), Vibrio (12 %), Staphyolococcus (8 %), Streptococcus (4 %)andEnterobacter (4 %). A non-fluorescent Pseudomonas sp. identified as Pseudomonas stutzeri by 16S rRNA analysis was found to be most potential isolate with the ability to transform ~ 65 % of TPT when grown in BSS-SG medium with 100 mg L−1 TPT. Such bacterial strains having capability of transforming and withstanding high concentration of pollutants will be useful in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzieu, C. (1996). Biological effects of tributyltin on marine organisms. In S. J. de Mora (Ed.), Tributyltin, case study of an environmental contaminant (pp. 167–211). Cambridge: Cambridge University Press.

    Google Scholar 

  • Baggi, G., Barbieri, P., Galli, E., & Tollari, S. (1987). Isolation of a Pseudomonas stutzeri strain that degrades ortho-xylene. Applied Environmental Microbiology, 53, 2129–2132.

    Google Scholar 

  • Barnes, R., Bull, A., & Poller, R. (1973). Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin-acetate) in the soil and on surfaces exposed to light. Pesticide Science, 4, 305–317.

    Article  Google Scholar 

  • Barroso, C., & Moreira, M. (2002). Spatial and temporal changes of TBT pollution along the Portuguese coast, inefficacy of the EEC directive 89/677. Marine Pollution Bulletin, 44, 480–486.

    Article  Google Scholar 

  • Barug, D. (1981). Microbial degradation of bis(tributyltin)oxide. Chemosphere, 10, 1145–1154.

    Article  Google Scholar 

  • Basu Baul, T. (2008). Antimicrobial activity of organotin(IV) compounds, a review. Applied organometallic chemistry, 22, 195–204.

    Article  Google Scholar 

  • Bennett, R. (1996). Industrial manufacture and application of tributyltin compounds. In S. J. de Mora (Ed.), Tributyltin, a case study of an environmental contaminant. Cambridge environmental chemistry series (pp. 21-61). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bernat, P., & Długonski, J. (2002). Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotecholgy Letters, 24, 1971–1974.

    Article  Google Scholar 

  • Bernat, P., & Dlugonski, J. (2006). Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. International Biodeterioration Biodegradation. doi:10.1016/j.ibiod.2006.12.004.

    Google Scholar 

  • Bhosle, N. B. (1981). Microbial degradation of petroleum hydrocarbon. PhD thesis. India: University of Mumbai.

    Google Scholar 

  • Bhosle, N. B., Garg, A., Jadhav, S., Harji, R., Sawant, S., Venkat, K., & Anil, A. C. (2004). Butyltins in water, biofilm and sediments of the west coast of India. Chemosphere, 57, 897–907.

    Article  Google Scholar 

  • Bhosle, N., Garg, A., Harji, R., Jadhav, S., Sawant, S., Venkat, K., & Anil, A. C. (2006). Butyltins in the sediments of Kochi and Mumbai harbours, west coast of India. Environment International, 32, 252–258.

    Article  Google Scholar 

  • Blunden, S., & Evans, C. (1990). Organotin compounds. In O. Hutzinger (ed.), The handbook of environmental chemistry Vol. 3, Part E, Anthropogenic compounds (pp. 1–44). Berlin: Springer.

    Google Scholar 

  • Bryan, G., Gibbs, P., & Burt, G. (1998). A comparison of the effectiveness of tributyltin chloride and five other organotin compounds in promoting development of imposex in dogwhelk, Nucella lapillus. Journal of Marine Biology Association, 68, 733–744.

    Article  Google Scholar 

  • Cai, Y., Rapsomanikis, S., & Andreae, M. (1993). Determinination of butyltin compounds in sediments using gas chromatography atomic absorption spectrometry; comparison of sodium tertahydroborate and sodium tertaethylborate derivatisation methods. Analytica Chimica Acta, 274, 243–251.

    Article  Google Scholar 

  • Champ, M., & Seligman, P. (1996). An introduction to organotin compounds and their use in antifouling coatings. In M. A. Champ & P. F. Seligman (Eds.), Organotin environmental fate and effects (pp. 1–25). London: Chapman and Hall.

    Google Scholar 

  • CICAD 13. (1999). Concise international chemical assessment document on triphenyltin compounds. Geneva: WHO.

    Google Scholar 

  • COM (2006). Commission of the European communities, 398 final, Sec (2006) 947: Directive of the European parliament and Council of communities on the environmental quality standard in the field of water policy and amending directive 2000/60/EC.

    Google Scholar 

  • Cruz, A., Caetano, T., Suzuki, S., & Mendo, S. (2007). Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal. Marine Environment Resources, 64, 639–650.

    Article  Google Scholar 

  • Davies, R., & Smith, P. (1980). Recent advances in organotin chemistry. Journal of Advance Inorganic Chemistry and Radiochemistry, 23, 1–185.

    Article  Google Scholar 

  • De Mora, S., & Pelletier, E. (1997). Environmental tributyltin research, past, present and future. Environment Science and Technology, 18, 1169–1177.

    Article  Google Scholar 

  • Dubey, S., & Roy, U. (2003). Biodegradation of tributyltins (organotins) by marine bacteria. Applied Organometallic Chemistry, 17, 3–8.

    Article  Google Scholar 

  • Dybas, M., Tatara, G., & Criddle, C. (1995). Localization and characterization of the carbon-tetrachloride transformation activity of Pseudomonas sp. strain KC. Applied Environmental Microbiology, 61, 758–762.

    Google Scholar 

  • Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicolology, 26, 3–117.

    Article  Google Scholar 

  • Fent, K., & Hunn, J. (1991). Phenyltins in water, sediment, and biota of freshwater marinas. Environment Science and Technology, 25, 956–963.

    Article  Google Scholar 

  • Gibbs, P., Pascoe, P., & Bryan, G. (1991). Tributyltin-induced imposex in stenoglossan gastropods, pathological effects on the female reproductive system. Comprehensive Biochemistry and Physiology, 100C, 231–235.

    Google Scholar 

  • Harino, H., Fukushima, M., Kurokawa, Y., & Kawai, S. (1997). Susceptibility of bacterial populations to organotin compounds and microbial degradation of organotin compounds in environmental water. Environment Pollution, 98, 157–162.

    Article  Google Scholar 

  • Harino, H., Fukushima, M., Yamamoto, Y., Kawai, S., & Miyazaki, N. (1998). Organotin compounds in water, sediment, and biological samples from the Port of Osaka, Japan. Archives of Environmental Contamination and Toxicology, 35, 558–564.

    Article  Google Scholar 

  • Harino, H., Fukushima, M., & Kawai, S. (2000). Accumulation of butyltin and phenyltin compounds in various fish species. Archives of Environmental Contamination and Toxicology, 39, 13–19.

    Article  Google Scholar 

  • Hoch, M. (2001). Organotin compounds in the environment-an overview. Applied Geochemistry, 16, 719–743.

    Article  Google Scholar 

  • Horiguchi, T., Shiraishi, H., Shimizu, M., & Morita, M. (1997). Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environment Pollution, 95, 85–91.

    Article  Google Scholar 

  • Hu, J., Zhang, Z., Wei, Q., Zhen, H., Zhao, Y., Peng, H., Wan, Y., Giesy, J., Li, L., & Zhang, B. (2009). Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent. Proceedings National Academy Science USA, 106, 9339–9344.

    Google Scholar 

  • Hung, C., Lee, T., & Liao, T. (1998). Determination of butyltins and phenyltins in oysters and fishes from Taiwan coastal waters. Environment Pollution, 102, 197–203.

    Article  Google Scholar 

  • Hung, C., Hsu, W., Mang, P., & Chuang, A. (2001). Organotins and imposex in the rock shell, Thais clavigera, from oyster mariculture areas in Taiwan. Environment Pollution, 112, 145–152.

    Article  Google Scholar 

  • Inoue, H., Takimura, O., Fuse, H., Murakami, K., Kamimura, K., & Yamaoka, Y. (2000). Degradation of triphenyltin by a fluorescent pseudomonad. Applied Environmental Microbiology, 66, 3492–3498.

    Article  Google Scholar 

  • Inoue, H., Takimura, O., Kawaguchi, K., Nitoda, T., Fuse, H., Murakami, K., & Yamaoka, Y. (2003). Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Applied Environmental Microbiology, 69, 878–883.

    Article  Google Scholar 

  • Jadhav, S., Bhosle, N. B., Massanisso, P., & Morabito, R. (2009). Organotins in the sediments of the Zuari estuary, west coast of India. Journal of Environmental Management, 90, S4–S7.

    Article  Google Scholar 

  • Jadhav, S. (2013). Biodegradation of triphenyltin by marine bacteria. PhD thesis. India: Goa University.

    Google Scholar 

  • Jude, F., Arpin, C., Brachet-Castang, C., Capdepuy, M., Caumette, P., & Quentin, C. (2004). TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiology Letters, 232, 7–14.

    Article  Google Scholar 

  • Kannan, K., Tanabe, S., Iwata, H., & Tatsukawa, R. (1995). Butyltins in muscle and liver of fish collected from certain Asian and Oceanian countries. Environment Pollution, 90, 279–290.

    Article  Google Scholar 

  • Kannan, K., & Lee, R. (1996). Triphenyltin and its degradation products in foliage and soils from sprayed pecan orchards and in fish from adjacent ponds. Environment Toxicology and Chemistry, 15, 1492–1499.

    Article  Google Scholar 

  • Kawai, S., Kurokawa, H., Harino, M., & Fukushima (1998). Degradation of tributyltin by a bacterial strain isolated from polluted river water. Environment Pollution, 102, 259–263.

    Google Scholar 

  • Krieg, N., & Holt, J. (1984). Bergey’s manual of systematic bacteriology (Vol. 1, pp. 140–309). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E., & Palleroni, N. J. (2006). Biology of Pseudomonas stutzeri. Microbiological Molecular Biology Reviews, 70, 510–547.

    Article  Google Scholar 

  • Lee, C., Wang, T., Hsieh, C., & Tien, C. (2005). Organotin contamination in fishes with different living pattern and its implications for human health risk in Taiwan. Environment Pollution, 137, 198–208.

    Article  Google Scholar 

  • Lee, C., Hsieh, C., & Tien, C. (2006). Factors influencing organotin distribution in different marine environmental compartments and their potential health risk. Chemosphere, 65, 547–559.

    Article  Google Scholar 

  • Lorenz, G., & Sikorski, J. (2000). The potential for intraspecific horizontal gene exchange by natural genetic transformation, sexual isolation among genomovars of Pseudomonas stutzeri. Microbiology (Reading, England), 146, 3081–3090.

    Google Scholar 

  • Maguire, R., Wong, P., & Rhamey, J. (1984). Accumulation and metabolism of tri-n-butyltin cation by a green algae, Ankistrodesmus falcutus. Canadian Journal of Aquatic Science, 41, 537–540.

    Article  Google Scholar 

  • Meng, P., Lin, J., & Liu, L. (2009). Aquatic organotin pollution in Taiwan. Journal of Environmental Management, 90, S8–S15.

    Article  Google Scholar 

  • Miller, C. E., Wuertz, S., & Cooney, J. (1995). Pfister RM. Plasmids in tributyltin-resistant bacteria from fresh and estuarine waters. Journal of Industrial Microbiology, 14, 337–342.

    Article  Google Scholar 

  • Mukohata, Y., & Kaji, Y. (1981). Light-induced membranepotential increase, ATP synthesis, and proton uptake in Halobacterium halobium RImR Catalyzed by Halorhodopsin, Effects of N, N'-dicyclohexylcarbodiimide triphenyltin chloride and 3,5-di -tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Archives of Biochemistry and Biophysics, 206, 72–76.

    Article  Google Scholar 

  • Osamu, T., Hiroyuki, I., Hiroyuki, F., M Katsuji, M., Yukiho, Y., Masato, A (2003). Adsorption and Degradation of Triphenyltin by Pseudomonas chlororaphis Immobilized in Alginate Beads. Journal of Japan Society’s Water Environment, 26, 713–717.

    Google Scholar 

  • Reader, S., & Pelletier, E. (1992). Biosorption and degradation of butyltin compounds by the marine diatom Skeletonema costatum and the associated bacterial community at low temperature. Bulletin of Environmental Contamination and Toxicology, 48, 599–607.

    Article  Google Scholar 

  • Rodríguez, E., Medesani, D., & Fingerman, M. (2007). Endocrine disruption in crustaceans due to pollutants, a review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146, 661–671.

    Article  Google Scholar 

  • Rossello-Mora, R., Lalucat, J., & Garcıa-Valdes, E. (1994). Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Applied Environmental Microbiolgy, 60, 966–972.

    Google Scholar 

  • Rouhi, A. (1998). The queeeze of tributyltin. Chemical Engineering News, 27, 41–42.

    Article  Google Scholar 

  • Roy, U., & Bhosle, S. (2006). Microbial transformation of tributyltin chloride by Pseudomonas aeruginosa strain USS25 NCIM-5224. Applied Organometallic Chemistry, 20, 5–11.

    Article  Google Scholar 

  • Rumampuk, N., Grevo, G., Rumengan, I., Ohji, M., Arai, T., & Miyazaki, N. (2004). Effects of triphenyltin exposure on red alga Eucheuma denticulatam. Coastal marine science, 29, 81–84.

    Google Scholar 

  • Salazar, M., & Salazar, S. (1991). Assessing site-specific effects of TBT contamination with mussel growth rates. Marine Environmental Resource, 32, 131–150.

    Article  Google Scholar 

  • Santos, M., Enes, P., Reis-Henriques, M., Kuballa, J., Castro, L., & Vieira, M. (2009). Organotin levels in seafood from Portuguese markets and the risk for consumers. Chemosphere, 75, 661–666.

    Article  Google Scholar 

  • Schulte-Oehlmann, U., Tillmann, M., Markert, B., Oehlmann, J., Watermann, B., & Scherf, S. (2000). Effects of endocrine disruptors on prosobranch snails (Mollusca, Gastropoda) in the laboratory. Part II. Triphenyltin as a xeno-androgen Ecotoxicology, 9, 399–412.

    Article  Google Scholar 

  • Sikorski, J., Graupner, M., Lorenz, G., & Wackernagel, W. (1998). Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology (Reading, England), 144, 569–576.

    Article  Google Scholar 

  • Sikorski, J., Mohle, M., & Wackernagel, W. (2002). Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environmental Microbiology, 4, 465–476.

    Article  Google Scholar 

  • Song, Z., & Huang, G. (2005). Toxic effect of triphenyltin on Lemna polyrhiza. Applied Organometallic Chemistry, 19, 807–810.

    Article  Google Scholar 

  • Sun, G., & Zhong, J. (2006). Mechanism of augmentation of organotin decomposition by ferripyochelin, formation of hydroxyl radical and organotin-pyochelin-iron ternary complex. Applied Environmental Microbiology, 72, 7264–7269.

    Article  Google Scholar 

  • Sun, G., Zhou, W., & Zhong, J. (2006). Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Applied Environmental Microbiology, 72, 6411–6413.

    Article  Google Scholar 

  • Suzuki, S., Fukagawa, T., & Takama, K. (1992). Occurrence of tributyltin-tolerant bacteria in tributyltin- or cadmium-containing seawater. Applied Environmental Microbiology, 58, 3410–3412.

    Google Scholar 

  • Suzuki, S., & Fukagawa, T. (1995). Tributyltin-resistant marine bacteria, a summary of recent work. Journal of Industrial Microbiology, 14, 154–158.

    Article  Google Scholar 

  • Suzuki, S., Kita-Tsukamoto, K., Fukagawa, T (1994). The 165 rRNA sequence and genome sizing of tributyltin resistant marine bacterium, strain M-1. Microbios, 77, 101–109.

    Google Scholar 

  • Takami, K., Okumura, H., Yamasaki, H., & Nakamoto, M. (1988). Determination of triphenyltin and tributyltin compounds in fish and shellfish by capillary GC. Bunseki Kagaku, 37, 449–455.

    Article  Google Scholar 

  • Tomlin, C. (1997). The pesticide manual (11th ed., p. 1606). Cambridge: The Royal Society of Chemistry (Surrey, British Crop Protection Council).

    Google Scholar 

  • Trevors, J., Oddie, K., & Belliveau, B. (1985). Metal resistance in bacteria (Environmental; transformation; genetics; plasmid; toxic; metal-tolerant; metal-sensitive). FEMS Microbiology, 32, 39–54.

    Article  Google Scholar 

  • Tsang, C., Lau, P., Tam, N., & Wong, Y. (1999). Biodegradation capacity of tributyltin by two Chlorella species. Environment Pollution, 105, 289–297.

    Article  Google Scholar 

  • Visoottiviseth, P., Kruawan, K., Bhumiratana, A., & Wilairat, P. (1995). Isolation of bacterial culture capable of degrading triphenyltin pesticides. Applied Organomettallic Chemistry, 9, 1–9.

    Article  Google Scholar 

  • Widdows, J., Donkin, P., Brinsley, M., Evans, S., Salkeld, P., Franklin, A., Law, R., & Waldock, M. (1995). Scope for growth and contaminant levels in North Sea mussels (Mytilus edulis). Marine Ecological Progress Series, 127, 131–148.

    Article  Google Scholar 

  • Wuertz, S., & Cooney, J. J. (1989). Toxic effects of tin on microorganisms. Journal of Industrial Microbiology. Biotechnology, 4, 375–402.

    Article  Google Scholar 

  • Yi, A., Leung, K., Lam, M., Lee, J., & Giesy, J. (2012). Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. Chemosphere, 89, 1015–1025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Jadhav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jadhav, S. (2015). Transformation of Triphenyltin by Eubacteria: Fate and Effects in Environmental System. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_10

Download citation

Publish with us

Policies and ethics