Skip to main content

Melanoma Resistance to Photodynamic Therapy

  • Chapter
  • First Online:
Resistance to Photodynamic Therapy in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

Abstract

Melanoma is a dreaded form of skin cancer caused by the malignant transformation of skin melanocytes and can be highly aggressive and has a rapidly growing incidence and elevated mortality and a poor prognosis at an advanced stage. Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches are being developed. Photodynamic therapy (PDT) has shown promising results for the treatment of different types of cancer. This therapy involves administration of a photosensitizer (PS), which on excitation after suitable irradiation generates singlet oxygen and other cytotoxic reactive oxygen species (ROS), thus, killing the cancer cells. Unfortunately, melanoma is considered to be resistant to PDT. There are many different reasons for this resistance including: (1) optical interference by melanin; (2) the anti-oxidant effect of melanin (3) sequestration of PS inside melanosomes (4) efflux of PS by multi-drug transporters and (5) errors in apoptotic pathways. Various approaches to overcome this PDT resistance of melanoma are being evaluated such as the use of agents that overcome the apoptotic defects, or hinder the efflux of PS, or use of methods to reduce the quantity or the pigmentation of the melanin. The introduction of highly active PS absorbing in the 700–800 nm near infrared (NIR) spectral region, and new advances in two-photon excitation of PS, together with PS linked to upconverting nanoparticles may overcome the optical interference of melanin. Finally, employing immunotherapy and, thus, exploiting the ability of PDT to activate the host immune system against the treated tumor, may also play a role in allowing PDT to overcome resistant melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–1228.

    Article  CAS  PubMed  Google Scholar 

  3. Tarhini AA, Agarwala SS. Cutaneous melanoma: available therapy for metastatic disease. Dermatol Ther. 2006;19:19–25.

    Article  PubMed  Google Scholar 

  4. Jilaveanu LB, Aziz SA, Kluger HM. Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol. 2009;27:614–25.

    Article  PubMed  Google Scholar 

  5. Shah DJ, Dronca RS. Latest advances in chemotherapeutic, targeted, and immune approaches in the treatment of metastatic melanoma. Mayo Clin Proc. 2014;89:504–19.

    Article  CAS  PubMed  Google Scholar 

  6. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    CAS  PubMed  Google Scholar 

  7. Baldea I, Filip AG. Photodynamic therapy in melanoma–an update. J. Physiol Pharmacol. 2012;63:109–18.

    CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  9. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22:3138–51.

    Article  CAS  PubMed  Google Scholar 

  10. Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP, Baldi A. Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol. 2005;14:811–8.

    Article  CAS  PubMed  Google Scholar 

  11. Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009;22:740–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Runger TM, Emmert S, Schadendorf D, Diem C, Epe B, Hellfritsch D. Alterations of DNA repair in melanoma cell lines resistant to cisplatin, fotemustine, or etoposide. J Invest Dermatol. 2000;114:34–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rass K, Gutwein P, Welter C, Meineke V, Tilgen W, Reichrath J. DNA mismatch repair enzyme hMSH2 in malignant melanoma: increased immunoreactivity as compared to acquired melanocytic nevi and strong mRNA expression in melanoma cell lines. Histochem J. 2001;33:459–67.

    Article  CAS  PubMed  Google Scholar 

  14. Korabiowska M, Brinck U, Dengler H, Stachura J, Schauer A, Droese M. Analysis of the DNA mismatch repair proteins expression in malignant melanomas. Anticancer Res. 2000;20:4499–505.

    CAS  PubMed  Google Scholar 

  15. Chen KG, Szakacs G, Annereau JP, Rouzaud F, Liang XJ, Valencia JC, Nagineni CN, Hooks JJ, Hearing VJ, Gottesman MM. Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes. Pigment Cell Res. 2005;18:102–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Eigentler TK, Meier F, Garbe C. Protein kinase inhibitors in melanoma. Expert Opin Pharmacother. 2013;14:2195–201.

    Article  CAS  PubMed  Google Scholar 

  17. Nissan MH, Solit DB. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both? Curr Oncol Rep. 2011;13:479–87.

    Article  CAS  PubMed  Google Scholar 

  18. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumor immunity. Nat Rev Cancer. 2006;6:535–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Babilas P, Schreml S, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology: state-of-the-art. Photodermatol Photoimmunol Photomed. 2010;26:118–32.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson JS, McCullough JL, Berns MW. Photodynamic therapy of human malignant melanoma xenografts in athymic nude mice. J Natl Cancer Inst. 1988;80:56–60.

    Article  CAS  PubMed  Google Scholar 

  22. Biolo R, Jori G, Soncin M, Rihter B, Kenney ME, Rodgers MA. Effect of photosensitizer delivery system and irradiation parameters on the efficiency of photodynamic therapy of B16 pigmented melanoma in mice. Photochem Photobiol. 1996;63:224–8.

    Article  CAS  PubMed  Google Scholar 

  23. Schuitmaker JJ, van Best JA, van Delft JL, Dubbelman TM, Oosterhuis JA, de Wolff-Rouendaal D. Bacteriochlorin a, a new photosensitizer in photodynamic therapy. In vivo results. Invest Ophthalmol Vis Sci. 1990;31:1444–50.

    CAS  PubMed  Google Scholar 

  24. Woodburn KW, Fan Q, Kessel D, Luo Y, Young SW. Photodynamic therapy of B16F10 murine melanoma with lutetium texaphyrin. J Invest Dermatol. 1998;110:746–51.

    Article  CAS  PubMed  Google Scholar 

  25. Busetti A, Soncin M, Jori G, Rodgers MA. High efficiency of benzoporphyrin derivative in the photodynamic therapy of pigmented malignant melanoma. Br J Cancer. 1999;79:821–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sheleg SV, Zhavrid EA, Khodina TV, Kochubeev GA, Istomin YP, Chalov VN, Zhuravkin IN. Photodynamic therapy with chlorin e(6) for skin metastases of melanoma. Photodermatol Photoimmunol Photomed. 2004;20:21–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cordoba F, Braathen LR, Weissenberger J, Vallan C, Kato M, Nakashima I, Weis J, von Felbert V. 5-aminolaevulinic acid photodynamic therapy in a transgenic mouse model of skin melanoma. Exp Dermatol. 2005;14:429–37.

    Article  CAS  PubMed  Google Scholar 

  28. Davids LM, Kleemann B. Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev. 2011;37:465–75.

    CAS  PubMed  Google Scholar 

  29. Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB, Huang YY, Wu Q, Whalen MJ, Sato S, Obara M, Hamblin MR. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6:e26212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hadjur C, Richard MJ, Parat MO, Jardon P, Favier A. Photodynamic effects of hypericin on lipid peroxidation and antioxidant status in melanoma cells. Photochem Photobiol 1996;64:375–81.

    Article  CAS  PubMed  Google Scholar 

  31. Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9:135–60.

    Article  CAS  PubMed  Google Scholar 

  32. Busetti A, Soncin M, Reddi E, Rodgers MA, Kenney ME, Jori G. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine. J Photochem Photobiol B. 1999;53:103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma KV, Bowers N, Davids LM. Photodynamic therapy-induced killing is enhanced in depigmented metastatic melanoma cells. Cell Biol Int. 2011;35:939–44.

    Article  CAS  PubMed  Google Scholar 

  34. Suzukawa AA, Vieira A, Winnischofer SM, Scalfo AC, Di Mascio P, Ferreira AM, Ravanat JL, Martins Dde L, Rocha ME, Martinez GR. Novel properties of melanins include promotion of DNA strand breaks, impairment of repair, and reduced ability to damage DNA after quenching of singlet oxygen. Free Radic Biol Med. 2012;52:1945–53.

    Article  CAS  PubMed  Google Scholar 

  35. Davids LM, Kleemann B, Cooper S, Kidson SH. Melanomas display increased cytoprotection to hypericin-mediated cytotoxicity through the induction of autophagy. Cell Biol Int. 2009;33:1065–72.

    Article  CAS  PubMed  Google Scholar 

  36. Davids LM, Kleemann B, Kacerovska D, Pizinger K, Kidson SH. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J Photochem Photobiol B. 2008;91:67–76.

    Article  CAS  PubMed  Google Scholar 

  37. Bebes A, Nagy T, Bata-Csorgo Z, Kemeny L, Dobozy A, Szell M. Specific inhibition of the ABCG2 transporter could improve the efficacy of photodynamic therapy. J Photochem Photobiol B. 2011;105:162–6.

    Article  CAS  PubMed  Google Scholar 

  38. Anand S, Honari G, Hasan T, Elson P, Maytin EV. Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo. Clin Cancer Res. 2009;15:3333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ruzie C, Krayer M, Balasubramanian T, Lindsey JS. Tailoring a bacteriochlorin building block with cationic, amphipathic, or lipophilic substituents. J Org Chem. 2008;73:5806–20.

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi M, Cramer DL, Bhise AD, Kee HL, Bocian DF, Holten D, Lindsey JS. Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New J Chem. 2008;32:947–58.

    Article  CAS  Google Scholar 

  41. Dabrowski JM, Krzykawska M, Arnaut LG, Pereira MM, Monteiro CJ, Simoes S, Urbanska K, Stochel G. Tissue uptake study and photodynamic therapy of melanoma-bearing mice with a nontoxic, effective chlorin. Chem Med Chem. 2011;6:1715–26.

    Article  CAS  PubMed  Google Scholar 

  42. Mroz P, Huang YY, Szokalska A, Zhiyentayev T, Janjua S, Nifli AP, Sherwood ME, Ruzie C, Borbas KE, Fan D, Krayer M, Balasubramanian T, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 2010;24:3160–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18:1580–5.

    Article  CAS  PubMed  Google Scholar 

  44. Khurana M, Collins HA, Karotki A, Anderson HL, Cramb DT, Wilson BC. Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. Photochem Photobiol. 2007;83:1441–8.

    Article  CAS  PubMed  Google Scholar 

  45. Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliott A, McInnerney K, Spangler CW. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin Cancer Res. 2008;14:6564–73.

    Article  CAS  PubMed  Google Scholar 

  46. Ma LW, Nielsen KP, Iani V, Moan J. A new method for photodynamic therapy of melanotic melanoma -effects of depigmentation with violet light photodynamic therapy. J Environ Pathol Toxicol Oncol. 2007;26:165–72.

    Article  CAS  PubMed  Google Scholar 

  47. Busetti A, Soncin M, Jori G, Kenney ME, Rodgers MA. Treatment of malignant melanoma by high-peak-power 1064 nm irradiation followed by photodynamic therapy. Photochem Photobiol. 1998;68:377–81.

    Article  CAS  PubMed  Google Scholar 

  48. Radzi R, Osaki T, Tsuka T, Imagawa T, Minami S, Nakayama Y, Okamoto Y. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells. J Vet Med Sci. 2012;74:545–51.

    Article  CAS  PubMed  Google Scholar 

  49. Glassberg E, Lewandowski L, Halcin C, Lask G, Uitto J. Hyperthermia potentiates the effects of aluminum phthalocyanine tetrasulfonate-mediated photodynamic toxicity in human malignant and normal cell lines. Lasers Surg Med. 1991;11:432–9.

    Article  CAS  PubMed  Google Scholar 

  50. Naylor MF, Chen WR, Teague TK, Perry LA, Nordquist RE. In situ photoimmunotherapy: a tumor-directed treatment for melanoma. Br J Dermatol. 2006;155:1287–92.

    Article  CAS  PubMed  Google Scholar 

  51. Saji H, Song W, Furumoto K, Kato H, Engleman EG. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin Cancer Res. 2006;12:2568–74.

    Article  CAS  PubMed  Google Scholar 

  52. Gogas H, Polyzos A, Kirkwood J. Immunotherapy for advanced melanoma: fulfilling the promise. Cancer Treat Rev. 2013;39:879–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Hamblin laboratory is supported by US NIH grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R Hamblin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, S., Huang, YY., Hamblin, M. (2015). Melanoma Resistance to Photodynamic Therapy. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_11

Download citation

Publish with us

Policies and ethics