Skip to main content

Advertisement

Log in

The “SWOT” of BRAF Inhibition in Melanoma: RAF Inhibitors, MEK Inhibitors or Both?

  • Melanoma (Kim A. Margolin, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  2. Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev. 1995;42(4):459–67.

    Article  PubMed  CAS  Google Scholar 

  3. Pratilas CA et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106(11):4519–24.

    Article  PubMed  CAS  Google Scholar 

  4. Board RE et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer. 2009;101(10):1724–30.

    Article  PubMed  CAS  Google Scholar 

  5. Dong C et al. SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J Biol Chem. 1996;271(11):6328–32.

    Article  Google Scholar 

  6. Eblen ST et al. Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol. 2004;24(6):2308–17.

    Article  PubMed  CAS  Google Scholar 

  7. Northwood IC et al. Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J Biol Chem. 1991;266(23):15266–76.

    PubMed  CAS  Google Scholar 

  8. Vigil D et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10(12):842–57.

    Article  PubMed  CAS  Google Scholar 

  9. Weber CK et al. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61(9):3595–8.

    PubMed  CAS  Google Scholar 

  10. Wan PT et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.

    Article  PubMed  CAS  Google Scholar 

  11. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007;26(22):3203–13.

    Article  PubMed  CAS  Google Scholar 

  12. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004;5(6):441–50.

    Article  PubMed  CAS  Google Scholar 

  13. Pratilas CA, Solit DB. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res. 2010;16(13):3329–34.

    Article  PubMed  CAS  Google Scholar 

  14. Chitale D et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene. 2009;28(31):2773–83.

    Article  PubMed  CAS  Google Scholar 

  15. Davies H et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  16. Curtin JA et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  PubMed  CAS  Google Scholar 

  17. Samowitz WS et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063–9.

    Article  PubMed  CAS  Google Scholar 

  18. Dhomen N et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15(4):294–303.

    Article  PubMed  CAS  Google Scholar 

  19. Pollock PM et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  20. Vakiani E, Yantiss RK. Pathologic features and biologic importance of colorectal serrated polyps. Adv Anat Pathol. 2009;16(2):79–91.

    Article  PubMed  CAS  Google Scholar 

  21. Dankort D et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21(4):379–84.

    Article  PubMed  CAS  Google Scholar 

  22. Patton EE et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15(3):249–54.

    Article  PubMed  CAS  Google Scholar 

  23. Dankort D et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41(5):544–52.

    Article  PubMed  CAS  Google Scholar 

  24. Wilhelm SM et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.

    Article  PubMed  CAS  Google Scholar 

  25. Clark JW et al. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res. 2005;11(15):5472–80.

    Article  PubMed  CAS  Google Scholar 

  26. Bollag G et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9.

    Article  PubMed  CAS  Google Scholar 

  27. •• Flaherty KT et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19. This manuscript reports the first in-patient phase 1 trial of the RAF inhibitor PLX4032. In this trial, PLX4032 had an 81% response rate in patients with melanoma whose tumors expressed a BRAF mutation.

    Article  PubMed  CAS  Google Scholar 

  28. Chapman PB, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011.

  29. Joseph EW et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA. 2010;107(33):14903–8.

    Article  PubMed  CAS  Google Scholar 

  30. • Poulikakos PI et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30. This study demonstrates that the paradoxical activation of MAPK pathway signaling by PLX4032 observed in BRAF wild-type cells is mediated by the formation of RAF dimers.

    Article  PubMed  CAS  Google Scholar 

  31. Heidorn SJ et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  PubMed  CAS  Google Scholar 

  32. Hatzivassiliou G et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5.

    Article  PubMed  CAS  Google Scholar 

  33. Halaban R et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 2010;23(2):190–200.

    Article  PubMed  CAS  Google Scholar 

  34. LoRusso PM et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16(6):1924–37.

    Article  PubMed  CAS  Google Scholar 

  35. Kefford R, Arkenau H, Brown MP, Millward M, Infante JR, Long GV, Ouellet D, Curtis M, Lebowitz PF, Falchook GS. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 2010;28.

  36. Solit DB et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439(7074):358–62.

    Article  PubMed  CAS  Google Scholar 

  37. Pratilas CA et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 2008;68(22):9375–83.

    Article  PubMed  CAS  Google Scholar 

  38. Halilovic E et al. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res. 2010;70(17):6804–14.

    Article  PubMed  CAS  Google Scholar 

  39. Lorusso PM et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 2005;23(23):5281–93.

    Article  PubMed  CAS  Google Scholar 

  40. Brown AP et al. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59(5):671–9.

    Article  PubMed  CAS  Google Scholar 

  41. Dummer R, Robert C, Chapman PB, Sosman JA, Middleton M, Bastholt L, Kemsley K, Cantarini MV, Morris C, Kirkwood JM. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study. J Clin Oncol 2008;26.

  42. Tzekova V, Cebotaru C, Ciuleanu TE, Damjanov D, Ganchev H, Kanarev V, Stella PJ, Sanders N, Pover G, Hainsworth JD. Efficacy and safety of AZD6244 (ARRY-142886) as second/third-line treatment of patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol 2008;26(15S).

  43. Lang I, Adenis A, Boer K, Escudero P, Kim T, Valladares M, Sanders N, Pover G, Douillard J. AZD6244 (ARRY-142886) versus capecitabine (CAP) in patients (pts) with metastatic colorectal cancer (mCRC) who have failed prior chemotherapy. J Clin Oncol 2008;26.

  44. Infante JR, Fecher LA, Nallapareddy S, Gordon Ms, Flaherty KT, Cox DS, DeMarini DJ, Morris SR, Burris HA, Messersmith WA. Safety and efficacy results from the first-in-human study of the oral MEK 1/2 inhibitor GSK1120212. J Clin Oncol 2010;28(15s).

  45. Engelman JA et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14(12):1351–6.

    Article  PubMed  CAS  Google Scholar 

  46. She QB et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  47. Solit D, Sawyers CL. Drug discovery: how melanomas bypass new therapy. Nature. 2010;468(7326):902–3.

    Article  PubMed  CAS  Google Scholar 

  48. Whittaker S et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med. 2010;2(35):35ra41.

    Article  PubMed  Google Scholar 

  49. Nazarian R et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.

    Article  PubMed  CAS  Google Scholar 

  50. Wagle N et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011.

  51. Montagut C et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68(12):4853–61.

    Article  PubMed  CAS  Google Scholar 

  52. Johannessen CM et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72.

    Article  PubMed  CAS  Google Scholar 

  53. Villanueva J et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.

    Article  PubMed  CAS  Google Scholar 

  54. Gopal YN et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res. 2010;70(21):8736–47.

    Article  PubMed  CAS  Google Scholar 

  55. Hodi FS et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

M. H. Nissan: none; D. B. Solit: consultant to Roche, Wilex, Abbott, GlaxoSmithKline, and AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Solit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissan, M.H., Solit, D.B. The “SWOT” of BRAF Inhibition in Melanoma: RAF Inhibitors, MEK Inhibitors or Both?. Curr Oncol Rep 13, 479–487 (2011). https://doi.org/10.1007/s11912-011-0198-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-011-0198-4

Keywords

Navigation