Abrantes, P. (1993). Project work in school mathematics. In: De Lange, J. et al. (Eds), Innovation in Maths Education by Modelling and Applications. Chichester: Horwood, 355-364.
Google Scholar
Aebli, H. (1985). Zwölf Grundformen des Lehrens. Stuttgart: Klett-Cotta.
Google Scholar
Alsina, C. (2007). Less chalk, less words, less symbols … More objects, more context, more actions. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 35-44.
Google Scholar
Antonius, S. et al. (2007). Classroom activities and the teacher. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 295-308.
Google Scholar
Ball, D.L., Hill, H.C. & Bass, H. (2005). Knowing mathematics for teaching. In: American Educator, 29 (3), 14-46.
Google Scholar
Baruk, S. (1985). L‘age du capitaine. De l‘erreur en mathematiques. Paris: Seuil.
Google Scholar
Baumert, J., Kunter, M. & Blum, W. et al. (2004). Mathematikunterricht aus Sicht der PISA-Schülerinnen und -Schüler und ihrer Lehrkräfte. In: Prenzel, M. et al. (Eds), PISA 2003. Der Bildungsstand der Jugendlichen in Deutschland – Ergebnisse des zweiten internationalen Vergleichs. Waxmann, Münster, 314-354.
Google Scholar
Baumert, J. & Kunter, M. (2013). The COACTIV Model of Teachers’ Professional Competence. In: Kunter, M., Baumert, J., Blum, W. et al. (Eds), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers – Results from the COACTIV Project. New York: Springer, 25-48.
Google Scholar
Baumert, J., Kunter, M., Blum, W. et al. (2010): Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. In: American Educational Research Journal 47(1), 133-180.
Google Scholar
Biccard, P. & Wessels, D.C.J. (2011). Documenting the Development of Modelling Competencies of Grade 7 Students. In: Kaiser, G. et al. (Eds). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 375-383.
Google Scholar
Blömeke, S., Kaiser, G. & Lehmann, R. (Eds, 2010). TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich. Münster: Waxmann.
Google Scholar
Blomhøj, M. & Jensen, T.H. (2007). What’s all the fuss about competencies? In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 45-56.
Google Scholar
Blum, W. (1998). On the role of “Grundvorstellungen” for reality-related proofs – examples and reflections. In: Galbraith, P. et al. (Eds), Mathematical Modelling – Teaching and Assessment in a Technology-Rich World. Chichester: Horwood, 63-74.
Google Scholar
Blum, W. (2011). Can Modelling Be Taught and Learnt? Some Answers from Empirical Research. In: Kaiser, G. et al. (Eds), Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 15-30.
Google Scholar
Blum, W. & Borromeo Ferri, R. (2009). Mathematical Modelling: Can it Be Taught and Learnt? In: Journal of Mathematical Modelling and Application 1(1), 45-58.
Google Scholar
Blum, W. & Leiß, D. (2006). “Filling up” – The problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In: Bosch, M. (Ed.), CERME-4 – Proceedings of the Fourth Conference of the European Society for Research in Mathematics Education. Guixol.
Google Scholar
Blum, W. & Leiß, D. (2007a). How do students’ and teachers deal with modelling problems? In: Haines, C. et al. (Eds), Mathematical Modelling: Education, Engineering and Economics. Chichester: Horwood, 222-231.
Google Scholar
Blum, W. & Leiß, D. (2007b). Investigating Quality Mathematics Teaching – the DISUM Project. In: Bergsten, C. & Grevholm, B. (Eds), Developing and Researching Quality in Mathematics Teaching and Learning, Proceedings of MADIF 5. Linköping: SMDF, 3-16.
Google Scholar
Blum, W. & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – state, trends and issues in mathematics instruction. In: Educational Studies in Mathematics 22(1), 37-68.
Google Scholar
Blum, W., Galbraith, P., Henn, H.-W. & Niss, M. (Eds, 2007). Modelling and Applications in Mathematics Education. New York: Springer.
Google Scholar
Borba, M.C. & Villarreal, M.E. (2005). Humans-with-Media and the Reorganization of Mathematical Thinking – Informations and Communication Technologies, Modeling, Experimentation and Visualization. New York: Springer.
Google Scholar
Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In: Haines, C. et al. (Eds), Mathematical Modelling: Education, Engineering and Economics. Chichester: Horwood, 260-270.
Google Scholar
Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen Modellierens: Kognitive Analysen zu Modellierungsprozessen im Mathematikunterricht. Wiesbaden: Vieweg+Teubner.
Google Scholar
Borromeo Ferri, R. & Blum, W. (2009). Insight into Teachers’ Unconscious Behaviour in Modeling Contexts. In: Lesh, R. et al. (Eds), Modeling Students’ Mathematical Modeling Competencies. New York: Springer, 423-432.
Google Scholar
Borromeo Ferri, R. & Blum, W. (2010). Mathematical Modelling in Teacher Education – Experiences from a Modelling Seminar. In: Durand-Guerrier, V., Soury-Lavergne, S. & Arzarello, F. (Eds), CERME-6 – Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education. INRP, Lyon 2010, 2046-2055.
Google Scholar
Borromeo Ferri, R. & Lesh, R. (2013). Should Interpretation Systems be Considered to be Models if they only Function Implicitly? In: Stillman, G. et al. (Eds). Teaching Mathematical Modelling: Connecting to Teaching and Research Practice – the Impact of Globalisation. New York: Springer.
Google Scholar
Burghes, D. (1986). Mathematical modelling – are we heading in the right direction? In: J. Berry et al. (Eds), Mathematical Modelling Methodology, Models and Micros. Chichester: Horwood, 11-23.
Google Scholar
Burkhardt, H. (2004). Establishing modelling in the curriculum: barriers and levers. In: Henn, H.W. & Blum, W. (Eds), ICMI Study 14: Applications and Modelling in Mathematics Education Pre-Conference Volume. University of Dortmund, 53-58.
Google Scholar
Burkhardt, H. & Pollak, H.O. (2006). Modelling in mathematics classrooms: reflections on past developments and the future. In: Zentralblatt für Didaktik der Mathematik 38(2), 178-195.
Google Scholar
DeCorte, E., Greer, B. & Verschaffel, L. (1996). Mathematics teaching and learning. In: Berliner, D.C. & Calfee, R.C. (Eds.), Handbook of Educational Psychology. New York: Macmillan, 491-549.
Google Scholar
DeLange, J. (1987). Mathematics, Insight and Meaning. Utrecht: CD-Press.
Google Scholar
Desoete, A. & Veenman, M.V.J. (2006). Metacognition in mathematics education. Hauppauge: Nova Science Publishers.
Google Scholar
Doerr, H. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 69-78.
Google Scholar
Doerr, H. & Lesh, R. (2011). Models and Modelling Perspectives on Teaching and Learning Mathematics in the Twenty-First Century. In: Kaiser, G. et al. (Eds). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 247-268.
Google Scholar
Frejd, P. & Ärlebäck, J. (2011). First Results from a Study Investigating Swedish Upper Secondary Students’ Mathematical Modelling Competencies. In: Kaiser, G. et al. (Eds). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 407-416.
Google Scholar
Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht: Reidel.
Google Scholar
Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht: Reidel.
Google Scholar
Galbraith, P. & Clathworthy, N. (1990). Beyond standard models – Meeting the challenge of modelling. In: Educational Studies in Mathematics 21(2), 137-163.
Google Scholar
Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. In: Zentralblatt für Didaktik der Mathematik 38(2), 143-162.
Google Scholar
Geiger, V. (2011). Factors Affecting Teachers’ Adoption of Innovative Practices with Technology and Mathematical Modelling. In: Kaiser, G. et al. (Eds, 2011), Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 305-314.
Google Scholar
Goos, M. (2002). Understanding metacognitive failure. In: Journal of Mathematical Behavior 21(3), 283-302.
Google Scholar
Greefrath, G., Siller, H.-S. & Weitendorf, J. (2011). Modelling Considering the Influence of Technology. In: Kaiser, G. et al. (Eds, 2011), Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 315-329.
Google Scholar
Greer, B. & Verschaffel, L. (2007). Modelling competencies – overview. In: Blum, W. et al. (Eds). Modelling and Applications in Mathematics Education. New York: Springer, 219-224.
Google Scholar
Haines, C. & Crouch, R. (2001). Recognizing constructs within mathematical modelling. In: Teaching Mathematics and its Applications 20(3), 129-138.
Google Scholar
Hattie, J.A.C. (2009): Visible Learning. A synthesis of over 800 meta-analyses relating to achievement. London & New York: Routledge.
Google Scholar
Henn, H.-W. (2007). Modelling pedagogy – Overview. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 321-324.
Google Scholar
Hiebert, J. & Carpenter, T.P. (1992). Learning and teaching with understanding. In: D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan, 65-97.
Google Scholar
Houston, K. (2007). Assessing the “phases” of mathematical modelling. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 249-256.
Google Scholar
Houston, K., & Neill, N. (2003). Assessing modelling skills. In: Lamon, S.J., Parker, W.A. & Houston, S.K. (Eds), Mathematical modelling: A way of life – ICTMA 11. Chichester: Horwood, 155-164.
Google Scholar
Ikeda, T. (2007). Possibilities for, and obstacles to teaching applications and modelling in the lower secondary levels. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 457-462.
Google Scholar
Ikeda, T. & Stephens, M. (2001). The effects of students’ discussion in mathematical modelling. In: Matos, J.F., Blum, W., Houston, S.K. & Carreira, S.P. (Eds.), Modelling and Mathematics Education: Applications in Science and Technology. Chichester: Horwood, 381-390.
Google Scholar
Izard, J., Haines, C.R., Crouch, R.M., Houston, S.K. & Neill, N. (2003). Assessing the impact of the teaching of modelling. In: Lamon, S., Parker, W. & Houston, S.K. (Eds), Mathematical Modelling: A Way of Life. Chichester: Horwood, 165-178.
Google Scholar
Kaiser-Meßmer, G. (1987). Application-oriented mathematics teaching. In: Blum, W. et al. (Eds), Applications and Modelling in Learning and Teaching Mathematics. Chichester: Horwood, 66-72.
Google Scholar
Kaiser, G. (2007). Modelling and modelling competencies in school. In: Haines, C. et al. (Eds), Mathematical Modelling: Education, Engineering and Economics. Chichester: Horwood, 110-119.
Google Scholar
Kaiser, G., Blum, W., Borromeo Ferri, R. & Stillman, G. (Eds, 2011). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer.
Google Scholar
Kaiser, G., Blomhøj, M. & Sriraman, B. (Eds, 2006). Mathematical modelling and applications: empirical and theoretical perspectives. In: Zentralblatt für Didaktik der Mathematik 38(2).
Google Scholar
Kaiser, G., Schwarz, B. & Tiedemann, S. (2010). Future Teachers´ Professional Knowledge on Modeling. In: Lesh, R., Galbraith, P.L., Haines, C.R. & Hurford, A. (Eds): Modeling Students’ Mathematical Modeling Competencies. ICTMA 13. New York: Springer, 433-444.
Google Scholar
Kintsch, W. & Greeno, J. (1985). Understanding word arithmetic problems. In: Psychological Review 92 (1), 109-129.
Google Scholar
Krainer, K. (1993). Powerful tasks: A contribution to a high level of acting and reflecting in mathematics instruction. In: Educational Studies in Mathematics 24, 65−93.
Google Scholar
Kramarski, B., Mevarech, Z.R. & Arami, V. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. In: Educational Studies in Mathematics 49(2), 225-250.
Google Scholar
Kunter, M. & Voss, T. (2013). The Model of Instructional Quality in COACTIV: A Multicriteria Analysis. In: Kunter, M., Baumert, J., Blum, W. et al. (Eds), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers – Results from the COACTIV Project. New York: Springer, 97-124.
Google Scholar
Kunter, M., Baumert, J., Blum, W. et al. (Eds, 2013). Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers – Results from the COACTIV Project. New York: Springer.
Google Scholar
Lave, J. (1992). Word problems: a microcosm of theories of learning. In: Light, P. & Butterworth, G. (Eds). Context and cognition: Ways of learning and knowing. New York: Harvester Wheatsheaf, 74-92.
Google Scholar
Leikin, R. & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. In: Educational Studies in Mathematics 66, 349-371.
Google Scholar
Leiß, D. (2007). Lehrerinterventionen im selbständigkeitsorientierten Prozess der Lösung einer mathematischen Modellierungsaufgabe. Hildesheim: Franzbecker.
Google Scholar
Leiß, D. (2010). Adaptive Lehrerinterventionen beim mathematischen Modellieren – empirische Befunde einer vergleichenden Labor- und Unterrichtsstudie. In: Journal für Mathematik-Didaktik 31 (2), 197-226.
Google Scholar
Lesh, R.A. & Doerr, H.M. (2003). Beyond constructivism: A models and modelling perspective on teaching, learning, and problem solving in mathematics education. Mahwah: Lawrence Erlbaum.
Google Scholar
Lingefjärd, T. (2013). Teaching mathematical modeling in teacher education: Efforts and results. In: Yang, X.-S. (Ed.), Mathematical Modeling with Multidisciplinary Applications. Holboken, Wiley, 57-80.
Google Scholar
Maaß, K. (2006). What are modelling competencies? In: Zentralblatt für Didaktik der Mathematik 38(2), 113-142.
Google Scholar
Maaß, K. (2007). Modelling in Class: What do we want the students to learn? In: Haines, C. et al. (Eds), Mathematical Modelling: Education, Engineering and Economics. Chichester: Horwood, 63-78.
Google Scholar
Matos, J.F. & Carreira, S. (1997). The quest for meaning in students’ mathematical modelling activity. In: Houston, S.K. et al. (Eds), Teaching & Learning Mathematical Modelling. Chichester: Horwood, 63-75.
Google Scholar
Nesher, P. (1980). The stereotyped nature of school word problems. In: For the Learning of Mathematics 1(1), 41-48.
Google Scholar
Neubrand, M. (2006). Multiple Lösungswege für Aufgaben: Bedeutung für Fach, Lernen, Unterricht und Leistungserfassung. In: Blum, W., Drüke-Noe, C., Hartung, R. & Köller, O. (Eds), Bildungsstandards Mathematik: konkret. Sekundarstufe I: Aufgabenbeispiele, Unterrichtsanregungen, Fortbildungsideen. Berlin: Cornelsen, 162-177.
Google Scholar
Niss, M. (1996). Goals of mathematics teaching. In: Bishop, A. et al. (Eds), International Handbook of Mathematical Education. Dordrecht: Kluwer, 11-47.
Google Scholar
Niss, M. (1999). Aspects of the nature and state of research in mathematics education. In: Educational Studies in Mathematics 40, 1-24.
Google Scholar
Niss, M. (2003). Mathematical Competencies and the Learning of Mathematics: The Danish KOM Project. In: Gagatsis, A. & Papastavridis, S. (Eds), 3rd Mediterranean Conference on Mathematical Education. Athens: The Hellenic Mathematical Society, 115-124.
Google Scholar
Niss, M. & Højgaard Jensen, T. (Eds, 2011). Competencies and Mathematical Learning. Roskilde University.
Google Scholar
Niss, M., Blum, W. & Galbraith, P. (2007). Introduction. In: W. Blum et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 3-32.
Google Scholar
OECD (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. Paris: OECD Publishing.
Google Scholar
Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 201-208.
Google Scholar
Pollak, H.O. (1969). How can we teach applications of mathematics? In: Educational Studies in Mathematics 2, 393-404.
Google Scholar
Pollak, H. (1979). The Interaction between Mathematics and Other School Subjects. In: UNESCO (Ed.), New Trends in Mathematics Teaching IV. Paris, 232-248.
Google Scholar
Reusser, K. (2001). Co-constructivism in educational theory and practice. In: Smelser, N.J., Baltes, P. & Weinert, F.E. (Eds), International Encyclopedia of the Social and Behavioral Sciences. Oxford: Pergamon/Elsevier Science, 2058-2062.
Google Scholar
Reusser & Stebler (1997). Every word problem has a solution: The suspension of reality and sense-making in the culture of school mathematics. In: Learning and Instruction 7, 309-328.
Google Scholar
Rittle-Johnson, B. & Star, J.R. (2009). Compared With What? The Effects of Different Comparisons on Conceptual Knowledge and Procedural Flexibility for Equation Solving. In: Journal of Educational Psychology 101(3), 529-544.
Google Scholar
Schmidt, W.H., Tatto, M.T., Bankov, K., Blömeke, S., Cedillo, T., Cogan, L., et al. (2007). The preparation gap: Teacher education for middle school mathematics in six countries (MT21 Report). East Lansing: MSU Center for Research in Mathematics and Science Education.
Google Scholar
Schoenfeld, A.H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. In: Educational Psychologist 23, 145-166.
Google Scholar
Schoenfeld, A.H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics. In: Voss, J.F., Perkins, D.N. & Segal, J.W. (Eds), Informal Reasoning and Education. Hillsdale: Erlbaum, 311-343.
Google Scholar
Schoenfeld, A.H. (1992). Learning to think mathematically: problem solving, metacognition, and sense-making in mathematics. In: Grouws, D. (Ed.), Handbook for Research on Mathematics Teaching and Learning. New York: MacMillan, 334-370.
Google Scholar
Schoenfeld, A.H. (1994). Mathematical Thinking and Problem Solving. Hillsdale: Erlbaum.
Google Scholar
Schukajlow, S. (2011). Mathematisches Modellieren. Schwierigkeiten und Strategien von Lernenden als Bausteine einer lernprozessorientierten Didaktik der neuen Aufgabenkultur. Münster: Waxmann.
Google Scholar
Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M. & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. In: Educational Studies in Mathematics 79(2), 215-237.
Google Scholar
Schukajlow, S. & Krug, A. (2013). Considering multiple solutions for modelling problems – design and first results from the MultiMa-Project. In: Stillman, G. et al. (Eds), Teaching Mathematical Modelling: Connecting to Teaching and Research Practice – the Impact of Globalisation. New York: Springer,.
Google Scholar
Shoaf, M.M., Pollak, H. & Schneider, J. (2004). Math Trails. Lexington: COMAP.
Google Scholar
Smit, J., van Eerde H. A. A. & Bakker, A. (2013). A conceptualisation of whole-class scaffolding. British Educational Research Journal 39(5), 817-834.
Google Scholar
Sol, M., Giménez, J. & Rosich, N. (2011). Project Modelling Roites in 12- 16-Year-Old Pupils. In: Kaiser, G. et al. (Eds). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 231-240.
Google Scholar
Staub, F.C. & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In: Weaver, C.A., Mannes, S. & Fletcher, C.R. (Eds), Discourse comprehension. Essays in honor of Walter Kintsch. Hillsdale: Lawrence Erlbaum, 285-305.
Google Scholar
Stillman, G. (2011). Applying Metacognitive Knowledge and Strategies in Applications and Modelling Tasks at Secondary School. In: Kaiser, G. et al. (Eds). Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 165-180.
Google Scholar
Stillman, G. & Galbraith, P. (1998). Applying mathematics with real world connections: Metacognitive characteristic of secondary students. In: Educational Studies in Mathematics 36(2), 157-195.
Google Scholar
Stillman, G., Kaiser, G., Blum, W. & Brown, J. (Eds, 2013). Teaching Mathematical Modelling: Connecting to Teaching and Research Practice – the Impact of Globalisation. New York: Springer.
Google Scholar
Timperley, H.S. (2011). Realizing the Power of Professional Learning. London: Open University Press.
Google Scholar
Treilibs, V., Burkhardt, H. & Low, B. (1980). Formulation processes in mathematical modelling. Nottingham: Shell Centre for Mathematical Education.
Google Scholar
Tsamir, P., Tirosh, D., Tabach, M. & Levenson, E. (2010). Multiple solution methods and multiple outcomes—is it a task for kindergarten children? In: Educational Studies in Mathematics 73, 217-231.
Google Scholar
Turner, R., Dossey, J., Blum, W. & Niss, M. (2013). Using Mathematical Competencies to Predict Item Difficulty in PISA: A MEG Study. In: Prenzel, M., Kobarg, M., Schöps, K. & Rönnebeck, S. (Eds.), Research on PISA – Research Outcomes of the PISA Research Conference 2009. New York: Springer, 23-37.
Google Scholar
Verschaffel, L., Greer, B. & DeCorte, E. (2000). Making Sense of Word Problems. Lisse: Swets & Zeitlinger.
Google Scholar
Verschaffel, L., van Dooren, W., Greer, B. & Mukhopadhyay, S. (2010). Reconceptualising Word Problems as Exercises in Mathematical Modelling. In: Journal für Mathematik-Didaktik 31(1), 9-29.
Google Scholar
Vos, P. (2007). Assessment of applied mathematics and modelling: Using a laboratory-like environment. In: Blum, W. et al. (Eds), Modelling and Applications in Mathematics Education. New York: Springer, 441-448.
Google Scholar
Xin, Z., Lin, C., Zhang, L. & Yan, R. (2007). The performance of Chinese primary school students on realistic arithmetic word problems. In: Educational Psychology in Practice 23, 145-159.
Google Scholar
Zöttl, L., Ufer, S. & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In: Kaiser, G. et al. (Eds), Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14). Dordrecht: Springer, 427-437.
Google Scholar