Skip to main content

Nanoparticles as Catalyst for Asphaltenes and Waste Heavy Hydrocarbons Upgrading

  • Chapter
  • First Online:
Nanoparticles: An Emerging Technology for Oil Production and Processing Applications

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 32))

  • 546 Accesses

Abstract

Oil, either conventional or unconventional, will continue to be the main source of future nonrenewable energy. The high energy demand worldwide is causing a decline in the conventional crude oil reserves, and thus, new alternative and cost-effective technologies for upgrading and recovery of conventional and unconventional oils are needed to sustain industrial activities. Unfortunately, the presence of high asphaltene content in heavy and extra-heavy crude oils can cause many issues such as high viscosity and low specific gravity that hinder processing, production, and transportation. This chapter presents the use of nanoparticle technology as an emerging potential alternative for enhancing heavy oil upgrading and recovery. Because of their unique properties, nanoparticles have considerable potential applications as adsorbents and catalysts in the heavy oil industry, for both surface and subsurface applications. In subsurface applications, the use of nanoparticles may enhance the upgrading and recovery of heavy oil by significantly increasing its H/C atomic ratio and reducing both viscosity and coke formation. Nanoparticles are also employed as adsorbent/catalysts for separating asphaltenes followed by their catalytic decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Berkowitz, J.G. Speight, The oil sands of Alberta. Fuel 54(3), 138–149 (1975)

    Article  Google Scholar 

  2. A. Shah et al., A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 3(6), 700–714 (2010)

    Article  Google Scholar 

  3. L.C. Castaneda, J.A. Muñoz, J. Ancheyta, Current situation of emerging technologies for upgrading of heavy oils. Catal. Today 220, 248–273 (2014)

    Article  Google Scholar 

  4. C. Fan et al., The oxidation of heavy oil: Thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model. Fuel Process. Technol. 119, 146–150 (2014)

    Article  Google Scholar 

  5. A. Hassan et al., Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catal. Today 207, 112–118 (2013)

    Article  Google Scholar 

  6. L. Carbognani et al., Selective adsorption of thermal cracked heavy molecules. Energy Fuel 22(3), 1739–1746 (2008)

    Article  Google Scholar 

  7. H. Groenzin, O.C. Mullins, J. Phys. Chem. A 103, 11237 (1999)

    Article  Google Scholar 

  8. S. Chavan, H. Kini, R. Ghosal, Process for sulfur reduction from high viscosity petroleum oils

    Google Scholar 

  9. C. Wu et al., Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst. J. Fuel Chem. Technol. 38(6), 684–690 (2010)

    Article  Google Scholar 

  10. J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining (Wiley, 2011)

    Book  Google Scholar 

  11. Y. Zhang et al., Fundamentals of petroleum residue cracking gasification for coproduction of oil and syngas. Ind. Eng. Chem. Res. 51(46), 15032–15040 (2012)

    Article  Google Scholar 

  12. L. Castañeda, J. Muñoz, J. Ancheyta, Combined process schemes for upgrading of heavy petroleum. Fuel 100, 110–127 (2012)

    Article  Google Scholar 

  13. L. Atkins, T. Higgins, C. Barnes, Heavy crude oil: global analysis and outlook to 2030. Hart energy consulting report, 2010

    Google Scholar 

  14. O. Omole, M. Olieh, T. Osinowo, Thermal visbreaking of heavy oil from the Nigerian tar sand. Fuel 78(12), 1489–1496 (1999)

    Article  Google Scholar 

  15. M. Thomas et al., Visbreaking of Safaniya vacuum residue in the presence of additives. Fuel 68(3), 318–322 (1989)

    Article  Google Scholar 

  16. F. Rodriguez-Reinoso et al., Delayed coking: Industrial and laboratory aspects. Carbon 36(1), 105–116 (1998)

    Article  Google Scholar 

  17. E. Furimsky, Characterization of cokes from fluid/flexi-coking of heavy feeds. Fuel Process. Technol. 67(3), 205–230 (2000)

    Article  Google Scholar 

  18. M. Marafi, A. Stanislaus, M. Absi-Halabi, Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents. Appl. Catal. B Environ. 4(1), 19–27 (1994)

    Article  Google Scholar 

  19. M. Marafi, A. Stanislaus, Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts. Catal. Today 130(2), 421–428 (2008)

    Article  Google Scholar 

  20. J. Van Dyk, M. Keyser, M. Coertzen, Syngas production from south African coal sources using Sasol–Lurgi gasifiers. Int. J. Coal Geol. 65(3), 243–253 (2006)

    Google Scholar 

  21. H. Liu et al., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel 83(7), 1055–1061 (2004)

    Article  Google Scholar 

  22. R. Hashemi, N.N. Nassar, P. Pereira Almao, Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 133, 374–387 (2014)

    Article  Google Scholar 

  23. E. Mobil, FLEXICOKINGâ„¢ conversion technology. [cited 2014]

    Google Scholar 

  24. C.E. Baukal Jr., The John Zink Hamworthy Combustion Handbook: Volume 1-Fundamentals (CRC Press, 2012)

    Book  Google Scholar 

  25. C.A. Franco, N.N. Nassar, T. Montoya, F.B. Cortés, NiO and PdO supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian c7-asphaltenes, in Handbook on Oil Production Research, ed. by J. Ambrosio, (Nova Science Publishers, Inc, Hauppauge, 2014)

    Google Scholar 

  26. C.A. Franco et al., Adsorption and subsequent oxidation of Colombian Asphaltenes onto nickel and/or palladium oxide supported on Fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)

    Article  Google Scholar 

  27. N.N. Nassar et al., Comparative study on thermal cracking of Athabasca bitumen. J. Therm. Anal. Calorim. 114(2), 465–472 (2013)

    Article  Google Scholar 

  28. N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuel 25(3), 1017–1023 (2011)

    Article  Google Scholar 

  29. N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25(4), 1566–1570 (2011)

    Article  Google Scholar 

  30. N.N. Nassar, A. Hassan, P. Pereira-Almao, Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J. Therm. Anal. Calorim. 110(3), 1327–1332 (2012)

    Article  Google Scholar 

  31. N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)

    Article  Google Scholar 

  32. F.B. Cortés et al., Sorption of Asphaltenes onto nanoparticles of nickel oxide supported on Nanoparticulated silica gel. Energy Fuel 26(3), 1725–1730 (2012)

    Article  Google Scholar 

  33. C. Franco et al., Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105(0), 408–414 (2013)

    Article  Google Scholar 

  34. N.N. Nassar, A. Hassan, P. Pereira-Almao, Clarifying the catalytic role of NiO nanoparticles in the oxidation of asphaltenes. Appl. Catal. A Gen. 462, 116–120 (2013)

    Article  Google Scholar 

  35. N.N. Nassar et al., Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012)

    Article  Google Scholar 

  36. N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy Fuel 24(8), 4116–4122 (2010)

    Article  Google Scholar 

  37. N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 384(1), 145–149 (2011)

    Article  Google Scholar 

  38. N.N. Nassar et al., Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catal. Today 207, 127–132 (2013)

    Article  Google Scholar 

  39. H. Abbas et al., Adsorption of Algerian Asphaltenes onto synthesized Maghemite Iron oxide nanoparticles. Pet. Chem., 1–9 (2020)

    Google Scholar 

  40. P.S. Wallace, et al., Heavy oil upgrading by the separation and gasification of asphaltenes. In 1998 Gasification technologies conference. 1998

    Google Scholar 

  41. A.D. Manasrah, G. Vitale, N.N. Nassar, Catalytic oxy-cracking of petroleum coke on copper silicate for production of humic acids. Appl. Catal. B Environ. 264, 118472 (2020)

    Article  Google Scholar 

  42. J.J. Adams, Asphaltene adsorption, a literature review. Energy Fuel 28(5), 2831–2856 (2014)

    Article  Google Scholar 

  43. E. Alizadeh-Gheshlaghi et al., Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 217, 330–339 (2012)

    Article  Google Scholar 

  44. X. Luo et al., Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 18(4), 319–326 (2006)

    Article  Google Scholar 

  45. M.K.K. Oo et al., Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst 136(13), 2811–2817 (2011)

    Article  Google Scholar 

  46. M. Khoobi et al., Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst. J. Magn. Magn. Mater. 375, 217–226 (2015)

    Article  Google Scholar 

  47. R. Hashemi, N.N. Nassar, P. Pereira-Almao, Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energy Fuel 26(3), 1645–1655 (2012)

    Article  Google Scholar 

  48. A.D. Manasrah et al., Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 8(4), 1791–1802 (2018)

    Article  Google Scholar 

  49. W.-X. Zhang, Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5(3–4), 323–332 (2003)

    Article  Google Scholar 

  50. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36–50 (2006)

    Article  Google Scholar 

  51. N.N. Nassar et al., Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of nC 7 asphaltenes. Fuel 156, 110–120 (2015)

    Article  Google Scholar 

  52. N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)

    Article  Google Scholar 

  53. A. Hassan et al., Catalytic steam gasification of n-C5 asphaltenes by kaolin-based catalysts in a fixed-bed reactor. Appl. Catal. A Gen. 507, 149–161 (2015)

    Article  Google Scholar 

  54. R. Syunyaev et al., Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy. Energy Fuel 23(3), 1230–1236 (2009)

    Article  Google Scholar 

  55. S. Acevedo et al., Adsorption of asphaltenes at the toluene− silica interface: A kinetic study. Energy Fuel 17(2), 257–261 (2003)

    Article  Google Scholar 

  56. A. Hassan et al., Catalytic steam gasification of athabasca visbroken residue by NiO–kaolin-based catalysts in a fixed-bed reactor. Energy Fuel 31(7), 7396–7404 (2017)

    Article  Google Scholar 

  57. M. Castro et al., Predicting adsorption isotherms of asphaltenes in porous materials. Fluid Phase Equilib. 286(2), 113–119 (2009)

    Article  Google Scholar 

  58. O.P. Strausz, P.A. Peng, J. Murgich, About the colloidal nature of asphaltenes and the MW of covalent monomeric units. Energy Fuel 16(4), 809–822 (2002)

    Article  Google Scholar 

  59. C. Drummond, J. Israelachvili, Fundamental studies of crude oil–surface water interactions and its relationship to reservoir wettability. J. Pet. Sci. Eng. 45(1–2), 61–81 (2004)

    Article  Google Scholar 

  60. H. Alboudwarej et al., Adsorption of asphaltenes on metals. Ind. Eng. Chem. Res. 44(15), 5585–5592 (2005)

    Article  Google Scholar 

  61. D.M. Sztukowski et al., Asphaltene self-association and water-in-hydrocarbon emulsions. J. Colloid Interface Sci. 265(1), 179–186 (2003)

    Article  Google Scholar 

  62. M.S. Akhlaq et al., Adsorption of crude oil colloids on glass plates: Measurements of contact angles and the factors influencing glass surface properties. Colloids Surf. A Physicochem. Eng. Asp. 126(1), 25–32 (1997)

    Article  Google Scholar 

  63. K.R. Dean, J.L. McATEE Jr., Asphaltene adsorption on clay. Appl. Clay Sci. 1(4), 313–319 (1986)

    Article  Google Scholar 

  64. N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 360(1), 233–238 (2011)

    Article  Google Scholar 

  65. N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy Fuel 25(9), 3961–3965 (2011)

    Article  Google Scholar 

  66. C.A. Franco et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)

    Article  Google Scholar 

  67. F. Lopez-Linares et al., Adsorption of Athabasca vacuum residues and their visbroken products over macroporous solids: Influence of their molecular characteristics. Energy Fuel 25(9), 4049–4054 (2011)

    Article  Google Scholar 

  68. T. Montoya, et al., Size effects of NiO nanoparticles on the competitive adsorption of quinolin-65 and violanthrone-79: Implications for oil upgrading and recovery. ACS Applied Nano Materials, 2020

    Google Scholar 

  69. C.A. Franco et al., Influence of Asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles. Energy Fuel 29(3), 1610–1621 (2015)

    Article  Google Scholar 

  70. P. Mars, D.W. Van Krevelen, Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954)

    Article  Google Scholar 

  71. N. Hosseinpour et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29(46), 14135–14146 (2013)

    Article  Google Scholar 

  72. N. Hosseinpour et al., Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. Appl. Catal. A Gen. 477, 159–171 (2014)

    Article  Google Scholar 

  73. C.A. Franco, F.B. Cortés, N.N. Nassar, Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. J. Colloid Interface Sci. 425, 168–177 (2014)

    Article  Google Scholar 

  74. C.A. Franco et al., Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuel 27(6), 2899–2907 (2013)

    Article  Google Scholar 

  75. B. Marlow et al., Colloidal stabilization of clays by asphaltenes in hydrocarbon media. Colloids Surf. 24(4), 283–297 (1987)

    Article  Google Scholar 

  76. S.F. Alkafeef, M.K. Algharaib, A.F. Alajmi, Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks. J. Colloid Interface Sci. 298(1), 13–19 (2006)

    Article  Google Scholar 

  77. P. Ekholm et al., A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. J. Colloid Interface Sci. 247(2), 342–350 (2002)

    Article  Google Scholar 

  78. A.W. Coats, J. Redfern, Kinetic parameters from thermogravimetric data. Nature 201(4914), 68–69 (1964)

    Article  Google Scholar 

  79. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)

    Article  Google Scholar 

  80. J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 4(5), 323–328 (1966)

    Article  Google Scholar 

  81. C.D. Doyle, Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5(15), 285–292 (1961)

    Article  Google Scholar 

  82. C.D. Doyle, Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290–291 (1965)

    Article  Google Scholar 

  83. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  Google Scholar 

  84. T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16(1971), 22–31 (1971)

    Google Scholar 

  85. S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22(2), 178–183 (2001)

    Article  Google Scholar 

  86. T. Montoya et al., Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13(3), 561–571 (2016)

    Article  Google Scholar 

  87. A. Amrollahi Biyouki, N. Hosseinpour, N.N. Nassar, Pyrolysis and oxidation of Asphaltene-born coke-like residue formed onto in situ prepared NiO nanoparticles toward advanced in situ combustion enhanced oil recovery processes. Energy Fuel 32(4), 5033–5044 (2018)

    Article  Google Scholar 

  88. Manasrah, A.D., Conversion of Petroleum Coke into Valuable Products Using Catalytic and Non-Catalytic Oxy-Cracking Reaction. 2018

    Google Scholar 

  89. C. Sosa, Adsorption of heavy hydrocarbons for the purpose of hydrogen production. 2007, MSc Thesis, University of Calgary, Calgary, AB, Canada

    Google Scholar 

  90. R.J. Lang, R.C. Neavel, Behaviour of calcium as a steam gasification catalyst. Fuel 61(7), 620–626 (1982)

    Article  Google Scholar 

  91. Y. Wu et al., Monodispersed Pd− Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura− Suzuki reaction. Inorg. Chem. 50(6), 2046–2048 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashaat N. Nassar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manasrah, A.D., Montoya, T., Hassan, A., Nassar, N.N. (2021). Nanoparticles as Catalyst for Asphaltenes and Waste Heavy Hydrocarbons Upgrading. In: Nassar, N.N., Cortés, F.B., Franco, C.A. (eds) Nanoparticles: An Emerging Technology for Oil Production and Processing Applications. Lecture Notes in Nanoscale Science and Technology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-12051-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12051-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12050-8

  • Online ISBN: 978-3-319-12051-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics