Skip to main content

Biofuels: Bioethanol, Biodiesel, Biogas, Biohydrogen from Plants and Microalgae

  • Chapter
  • First Online:
CO2 Sequestration, Biofuels and Depollution

Abstract

The recent issues of global warming has recently prompted an intense research for sustainable fuels as alternatives to fossil fuels. This chapter presents an overview of current biofuels including bioethanol, biodiesel, biogas and biohydrogen. Biofuels are classified into three generations, the first from agriculture, the second from lignocellulosic materials, the third from microalgae. The definition of a renewable resource is presented. We describe the various feedstocks and processes to produce biofuels. We discuss advantages and disadvantages of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T (2011) Biogas energy. Springer, Berlin

    Google Scholar 

  • Abdullah AZ et al (2009) Current status and policies on biodiesel industry in Malaysia as the world’s leading producer of palm oil. Energy Policy 37(12):5440–5448

    Article  Google Scholar 

  • Abou Kheira AA, Atta NMM (2009) Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 33(10):1343–1350

    Article  CAS  Google Scholar 

  • Arumugam S et al (2007) Bio-fuels, technology status and future trends, technology assessment and decision support tools. ICS-UNIDO, p. 142

    Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev 9(4):363–378

    Article  Google Scholar 

  • Boyle G (2004) Renewable energy. Oxford University Press, USA

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Bulack SC (1985) Phosphate diestertransesterification: general base catalysis and solvent effects on specific ion catalysis. Cornell University, Ithaca

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22(6):1490–1506

    Article  CAS  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  Google Scholar 

  • Deane JP, Gallachóir BPÓ, McKeogh EJ (2010) Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev 14(4):1293–1302

    Article  Google Scholar 

  • Demirbas A (2008) Biofuels: securing the planet’s future energy needs. Springer, New York

    Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473–3480

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley-VCH, Weinheim

    Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4(2):157–175

    Article  Google Scholar 

  • Dorado MP et al (2002) An alkali-catalyzed transesterification process for high free fatty acid waste oils. Trans Am Soc Agric Eng 5(3):525–529

    Google Scholar 

  • Erbaum JB (2009) Bioethanol: production, benefits and economics. Nova Science Publ., New York

    Google Scholar 

  • Field CB et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  CAS  Google Scholar 

  • Freedman B, Pryde E, Mounts T (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61(10):1638–1643

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Article  CAS  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Berlin, pp 1–69

    Book  Google Scholar 

  • Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Inc., Englewood Cliffs, p 288

    Google Scholar 

  • Hanjalic K et al (2008) Sustainable energy technologies options and prospects. Available from: http://public.eblib.com/EBLPublic/PublicView.do?ptiID=337939. Accessed 25 September 2012.

  • Harun R et al. (2010a) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010b) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22(4):189–194

    Article  CAS  Google Scholar 

  • Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. International Symposium on CO2 Fixation and Efficient Utilization of Energy (CandE 2002) and the International World Energy System Conference (WESC-2002). 30(11–12), pp 2042–2056

    Google Scholar 

  • Houghton R (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005, in trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge

    Google Scholar 

  • Howarth R, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106(4):679–690

    Article  CAS  Google Scholar 

  • Huang H-J et al (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21

    Article  CAS  Google Scholar 

  • Intergovernmental panel on climate change (2007) Climate change: the physical science basis. In: Solomon S, et al (eds). Cambridge University Press, Cambridge

    Google Scholar 

  • International Energy Agency (2006) World energy outlook 2006: organisation for economic co-operation and development OECD

    Google Scholar 

  • Jaccard M, (2006) Sustainable Fossil Fuels: The unusual suspect in the quest for clean and enduring energy. Cambridge University Press, Cambridge

    Google Scholar 

  • Janssen M et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210

    Article  CAS  Google Scholar 

  • John RP et al (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Article  CAS  Google Scholar 

  • Jones CS, Mayfield SP (2011) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351

    Article  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351

    Article  CAS  Google Scholar 

  • Kemp WH (2006) Biodiesel basics and beyond: a comprehensive guide to production and use for the home and farm. Aztext Press, Ontario

    Google Scholar 

  • Kulkarni MG et al (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem 8(12):1056–1062

    Article  CAS  Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Mabee W, Gregg D, Saddler J (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 123(1):765–778

    Article  Google Scholar 

  • Mata TM, Martins ANA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Maugeri L (2006) The age of oil: the mythology, history, and future of the world’s most controversial resource. Praeger, Westport

    Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Mendes-Pinto MM et al (2001) Evaluation of different cell disruption processes on encysted cells of & lt;b & gt; & lt;i & gt;Haematococcus pluvialis & lt;/i & gt; & lt;/b & gt;: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13(1):19–24

    Article  Google Scholar 

  • Minteer S (2006) Alcoholic Fuels. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Mittelbach M, Remschmidt C (2004) Biodiesel: the comprehensive handbook. Martin Mittelbach, Graz

    Google Scholar 

  • Molina Grima E et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  • Mudhoo A (2012) Biogas production: pretreatment methods in anaerobic digestion. Wiley, New York

    Book  Google Scholar 

  • Murugesan A et al (2009) Bio-diesel as an alternative fuel for diesel engines—a review. Renew Sustain Energy Rev 13(3):653–662

    Article  CAS  Google Scholar 

  • Nozik AJ (1978) Photoelectrochemistry applications to solar energy conversion. Annu Rev Phys Chem 29(1):189–222

    Article  CAS  Google Scholar 

  • Pandey A (2008) Handbook of plant-based biofuels. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod Biorefining 3(4):431–440

    Article  CAS  Google Scholar 

  • Pimentel D (2008) Biofuels, solar and wind as renewable energy systems: benefits and risks. Springer, Dordrecht

    Book  Google Scholar 

  • Pimentel D et al (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1(2):41–78

    Article  Google Scholar 

  • Pironon J et al (2010) On-line greenhouse gas detection from soils and rock formations. Int J Greenh Gas Control 4(2):217–224

    Article  CAS  Google Scholar 

  • Puppan D (2002) Environmental evaluation of biofuels. Period Polytech Soc Manage Sci 10:95–116

    Google Scholar 

  • Reijnders L (2006) Conditions for the sustainability of biomass based fuel use. Energy Policy 34(7):863–876

    Article  Google Scholar 

  • Rickeard DJ, Thompson ND (1993) A review of the potential for bio-fuels as transportation fuels. SAE International, Warrendale

    Google Scholar 

  • Schenk PM et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schuchardta U, Serchelia R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(3):199–210

    Google Scholar 

  • Schwab A et al (1988) Diesel fuel from thermal decomposition of soybean oil. J Amer Oil Chem Soc 65(11):1781–1786

    Article  CAS  Google Scholar 

  • Sheehan J, Laboratory NRE (1998) An overview of biodiesel and petroleum diesel life cycles1998. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Stevens CV, Verhé R (2004) Renewable bioresources: scope and modification for non-food applications. Wiley, New York

    Google Scholar 

  • Tomasevic AV, Siler-Marinkovic SS (2003) Methanolysis of used frying oil. Fuel Process Technol 81(1):1–6

    Article  CAS  Google Scholar 

  • Tredici MR (2007) Mass production of microalgae: photobioreactors, in handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, pp 178–214

    Google Scholar 

  • Vassiliou MS (2009) Historical dictionary of the petroleum industry. Scarecrow Press, Lanham

    Google Scholar 

  • Wang B et al (2008) CO2; bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  CAS  Google Scholar 

  • World Energy Look (2008) Organisation for Economic Co-operation Development (International Energy Agency), Paris

    Google Scholar 

  • Zhou W, Konar S, Boocock D (2003) Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J Am Oil Chem Soc 80(4):367–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Gharabaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gharabaghi, M., Delavai Amrei, H., Moosavi Zenooz, A., Shahrivar Guzullo, J., Zokaee Ashtiani, F. (2015). Biofuels: Bioethanol, Biodiesel, Biogas, Biohydrogen from Plants and Microalgae. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for a Sustainable World, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_6

Download citation

Publish with us

Policies and ethics