Skip to main content

Abstract

In behavioral neurosciences, animal models enable investigation of brain-behavior relations, with the aim of gaining insight into human behavior and its underlying processes. Beyond doubt, the most significant information derives from the study of humans, but this is not always possible due to ethical, methodological, and/or economical constraints. Alternatively, a comparative approach that relies on animal models could be used to reach these goals. This approach is based on the evolutionary theory proposing that fundamental aspects of the behavior of humans are shared with other animals (Nesse 1999; Panksepp et al. 2002). The ground for this proposal was established by Charles Darwin, by means of his book entitled The Expression of Emotions in Man and Animals (Darwin 1872).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It occurs when the animal stretches forward (Fig. 18.1c) and then retracts to its original position.

    Fig. 18.1
    figure 1

    The (rat) elevated plus-maze (EPM) is consisted of two opposite open-arms (surrounded by a small ledge), and two enclosed-arms, about 50 cm above the ground (a). Using the EPM to measure anxiety is relatively simple: one may score the number of entries and the time spent on the open-arms (b). In addition to these spatiotemporal measures, there are more refined postures associated with anxiety such as the stretched-attend (c). They are collectively referred to as risk assessment behaviors. An “anxious” animal is one that displays risk assessment behavior very often and rarely ventures out on the open-arms. In general, whereas anxiolytics (e.g., diazepam) increase open-arms exploration and reduce stretched-attend postures, anxiogenic drugs (e.g., pentylenetetrazole) produce the opposite effect. One possible complication, that an animal might not come out because it is inherently inactive rather than anxious, can be dealt with by scoring the number of enclosed-arms entries, an index of general exploratory activity in this test (panel d)

  2. 2.

    In addition, the genetical validation based on behavioral phenotyping approach is becoming increasingly important (Flint 2003).

References

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev. 2005;29:1123–44.

    Article  PubMed  Google Scholar 

  • Barnett SA. The rat: a study in behavior. Chicago: University of Chicago Press; 1975.

    Google Scholar 

  • Barrett JE, Miczek KA. Behavioral techniques in preclinical neuropsychopharmacology research. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology, the fourth generation of the progress. New York: Raven; 2000. p. 103–23.

    Google Scholar 

  • Belzung C. Measuring rodent exploratory behavior. In: Cruzio WE, Gerlai TT, editors. Handbook of molecular genetics for brain and behavior research. New York: Elsevier; 1999. p. 77–99.

    Google Scholar 

  • Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Le Pape G. Comparison of different behavioral test situations used in psychopharmacology for measurements of anxiety. Physiol Behav. 1994;56:623–8.

    Article  CAS  PubMed  Google Scholar 

  • Bertoglio LJ, Carobrez AP. Previous maze experience required to increase open arm avoidance in rats submitted to the elevated plus-maze model of anxiety. Behav Brain Res. 2000;108:197–203.

    Article  CAS  PubMed  Google Scholar 

  • Bertoglio LJ, Carobrez AP. Prior maze experience required to alter midazolam effects in rats submitted to the elevated plus-maze. Pharmacol Biochem Behav. 2002;72:449–55.

    Article  CAS  PubMed  Google Scholar 

  • Bertoglio LJ, Carobrez AP. Scopolamine given pre-Trial 1 prevents the one-trial tolerance phenomenon in the elevated plus-maze Trial 2. Behav Pharmacol. 2004;15:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience. 2005;133:873–92.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC. Anti-predator defence behaviors in a visible burrow system. J Comp Psychol. 1989;103:70–82.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ. The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol. 2003;463:97–116.

    Article  CAS  PubMed  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D. Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl). 2002;163:121–31.

    Article  CAS  Google Scholar 

  • Bourin M, Hascoet M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud F, Belzung C. Emotional reactivity in mice, a case of nongenetic heredity? Physiol Behav. 2001;74:355–62.

    Article  CAS  PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 2005;29:1193–205.

    Article  CAS  PubMed  Google Scholar 

  • Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequently pulsed magnetic field. Neurosci Biobehav Rev. 2001;25:235–60.

    Article  CAS  PubMed  Google Scholar 

  • Clement EY, Calatayd F, Belzung C. Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull. 2002;57:57–71.

    Article  PubMed  Google Scholar 

  • Darwin C. The expression of emotions in man and animals. New York: Philosophical Library; 1872 (Reprint 1985).

    Book  Google Scholar 

  • De Boer SF, Koolhaas JM. Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol. 2003;463:145–61.

    Article  PubMed  Google Scholar 

  • De-Mello N, Carobrez AP. Elevated T-maze as an animal model of memory: effects of scopolamine. Behav Pharmacol. 2002;13:139–48.

    Article  CAS  PubMed  Google Scholar 

  • File SE. Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res. 2001;125:151–7.

    Article  CAS  PubMed  Google Scholar 

  • File SE, Seth P. A review of 25 years of the social interaction test. Eur J Pharmacol. 2003;463:35–53.

    Article  CAS  PubMed  Google Scholar 

  • Finn DA, Rutledge-Gorman MT, Crabbe JC. Genetic animal models of anxiety. Neurogenetics. 2003;4:109–35.

    PubMed  Google Scholar 

  • Flint J. Animal models of anxiety and their molecular dissection. Semin Cell Dev Biol. 2003;14:37–42.

    Article  CAS  PubMed  Google Scholar 

  • Graeff FG, Zangrossi Jr H. Animal models of anxiety disorders. In: D’haenen H, Den Boer JA, Westenberg H, Willner P, editors. Textbook of biological psychiatry. London: Wiley; 2002. p. 879–93.

    Google Scholar 

  • Gray AJ, McNaughton N. The neuropsychology of anxiety. 2nd ed. New York: Oxford University Press; 2000. p. 72–82.

    Google Scholar 

  • Griebel G, Rodgers RJ, Perrault G, Sanger DJ. Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav. 1997;57:817–27.

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Rodgers RJ. Responses of Swiss-Webster mice to repeated plus-maze experience: further evidence for qualitative shift in emotional state? Pharmacol Biochem Behav. 1998;60:473–88.

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV. Today and tomorrow of anxiety research. Stress Behav. 2003;8:145–7.

    Google Scholar 

  • Kalueff AV, Tuohimaa P. Experimental modeling of anxiety and depression. Acta Neurobiol Exp. 2004;64:439–48.

    Google Scholar 

  • Kaplan RM, Saccuzzo DP. Psychological testing. Principles, applications, and issues. Pacific Grove: Brooks/Cole; 1997.

    Google Scholar 

  • Liebsch G, Linthorst AC, Neumann ID, Reul JM, Holsboer F, Landgraf R. Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology. 1998;19:381–96.

    Article  CAS  PubMed  Google Scholar 

  • McGuire M, Troisi A. Darwinian psychiatry. Oxford: Oxford University Press; 1998.

    Book  Google Scholar 

  • McKinney WT. Overview of the past contributions in animal models and their changing place in psychiatry. Semin Clin Neuropsychiatry. 2001;6:68–78.

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol. 2003;463:67–96.

    Article  CAS  PubMed  Google Scholar 

  • Nesse RM. Proximate and evolutionary studies of anxiety, stress and depression: synergy at the interface. Neurosci Biobehav Rev. 1999;23:895–903.

    Article  CAS  PubMed  Google Scholar 

  • Ohl F. Testing for anxiety. Clin Neurosci Res. 2003;3:233–8.

    Article  Google Scholar 

  • Ohl F, Roedel A, Storch C, Holsboer F, Landgraf R. Cognitive performance in rats differing in their inborn anxiety. Behav Neurosci. 2002;116:464–71.

    Article  PubMed  Google Scholar 

  • Overall KL. Natural animal models of human psychiatry conditions: assessment of mechanisms and validity. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:727–76.

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J, Moskal JR, Panksepp JB, Kroes RA. Comparative approaches in evolutionary psychology: molecular neuroscience meets the mind. Neuro Endocrinol Lett. 2002;23:105–15.

    PubMed  Google Scholar 

  • Pollack MH. Comorbid anxiety and depression. J Clin Psychiatry. 2005;66:22–9.

    Article  CAS  PubMed  Google Scholar 

  • Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ. Animal models of ‘anxiety’: where next? Behav Pharmacol. 1997;8:477–96.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Cole JC. The elevated plus maze: pharmacology, methodology and ethology. In: Cooper SJ, Hendrie CA, editors. Ethological pharmacology. New York: Wiley; 1994. p. 56–67.

    Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res. 1997;30:289–304.

    Article  CAS  PubMed  Google Scholar 

  • Roy V, Chapillon P. Further evidences that risk assessment and object exploration behaviours are useful to evaluate emotional reactivity in rodents. Behav Brain Res. 2004;154:439–48.

    Article  PubMed  Google Scholar 

  • Salome N, Viltart O, Darnaudery M. Reliability of high and low anxiety-related behaviour: influence of laboratory environment and multifactorial analysis. Behav Brain Res. 2002;136:227–37.

    Article  PubMed  Google Scholar 

  • Sanchez C. Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur J Pharmacol. 2003;463:133–43.

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP. Animal models in biological psychiatry. In: D’haenen H, Den Boer JA, Willner P, editors. Biological psychiatry. New York: Wiley; 2002. p. 47–79.

    Google Scholar 

  • Shephard JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT. Behavioral and pharmacological characterization of the elevated ‘zero-maze’ as an animal model of anxiety. J Psychopharmacol. 1994;116:56–64.

    Article  Google Scholar 

  • Silva RH, Frussa-Filho R. The plus-maze discriminative avoidance task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide and caffeine. J Neurosci Methods. 2000;102:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Uys JD, Stein DJ, Daniels WM, Harvey BH. Animal models of anxiety disorders. Curr Psychiatry Rep. 2003;5:274–81.

    Article  PubMed  Google Scholar 

  • van der Staay FJ. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Brain Res Rev. 2006;52:131–59.

    Article  Google Scholar 

  • van Gaalen MM, Steckler T. Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res. 2000;115:95–106.

    Article  PubMed  Google Scholar 

  • Wall PM, Messier C. Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal. Neurosci Biobehav Rev. 2001;25:275–86.

    Article  CAS  PubMed  Google Scholar 

  • Web of Science. According to the search performed in May 2009, using the entering expression “elevated plus-maze.” 2009. http://isi9.isiknowledge.com

  • Weiss SM, Wadsworth G, Fletcher A, Dourish CT. Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci Biobehav Rev. 1998;23:265–71.

    Article  CAS  PubMed  Google Scholar 

  • Zanotti A, Valzelli L, Toffano G. Reversal of scopolamine induced amnesia by phosphatidylserine in rats. Psychopharmacology (Berl). 1986;90:274–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Leandro José Bertoglio and Antônio de Pádua Carobrez are supported by fellowships from FAPESP and CNPq, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio de Pádua Carobrez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bertoglio, L.J., de Pádua Carobrez, A. (2016). Animal Tests for Anxiety. In: Andersen, M., Tufik, S. (eds) Rodent Model as Tools in Ethical Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11578-8_18

Download citation

Publish with us

Policies and ethics